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Abstract — This study was prompted by recent low-resource years 
in the eastern US observed in the SolarAnywhere® dataset. 
Herein, we investigate 20-year trends in GHI and clear-sky GHI 
for every latitude/longitude pair in the continental United States. 
Metrics we calculate are 20-year rate-of-change, means, and inter-
annual variability. We also look at the changes in GHI attributable 
to changes in AOD over this time-period. Thanks to accurate 
remote sensing, we can now provide this useful information. 
Our analysis also provides a solar industry perspective by 
quantifying the trends in potential kWHAC/kWDC for PV across 
the same regions; trends influenced largely GHI but also by 
temperature. These trends are not only important to understand 
from a bankability and performance assessment perspective for 
solar energy applications but also for future planning.  

Index Terms —solar resource, bankable data, future planning, 
performance assessment, trends, climate change. 

I. INTRODUCTION

Surface-level downward shortwave radiative flux at any given 
location on the planet is contingent on a number of 
deterministic and stochastic factors: the rotation of the earth 
around the sun and about its own tilted axis, variability of the 
extraterrestrial solar resource, cloud thickness driven by 
macro- meso- and micro-scale weather phenomena, the 
atmospheric optical depth (AOD) and water vapor content in 
the upper atmosphere.  In this paper, we investigate the macro- 
and meso-scale trends in global horizontal irradiance (GHI) 
and clear-sky global horizontal irradiance GHICLR at the 
annual timescale across 20 years, from 1998 through the end 
of 2019.  GHICLR is reflective only of the radiative transfer 
attenuation stemming from AOD and water vapor while GHI 
is reflective of both of these plus the attenuation from clouds.   

SolarAnywhere’s (SA) satellite-based hourly-interval 
irradiance dataset is sampled across 832 1°x1° tiles arrayed 
evenly across the ConUS. During the considered 20-year 
period, mean and extreme temperatures have moved upward – 
one of the many global warming trends observed worldwide. 

Here we explore whether this documented thermal trend is 
matched by changes in surface and clear-sky solar resource 
over the same period. This question is of interest to PV 
financiers, developers and asset managers to assess the risks 
associated with any predicted future cashflows.   

Figure 1: 365-day moving average of  GHI (W/m2) at Eureka, 
California. Red line shows annual averages while blue line and 
shaded region shows  linear trend with 90% confidence interval.  

II. CASE STUDY: EUREKA, CALIFORNIA

As an example to demonstrate the method we will use to 
investigate trends across the ConUS, consider Eureka, CA. 
365-day moving average irradiance at this site is pictured in
Figure 1. GHI’s inter-annual variability exhibits a standard
deviation of 6.7 W/m2 about a mean of 163 W/m2 (+/-3.9%).
While this does not jump out as particularly drastic, a linear
trend (fit using QR decomposition to solve the linear least-
squares equation) indicates a rate of change of roughly +14
W/ m2 or +9.2% across 20 years.  If a PV project developer
selected the long-term average as a benchmark to forecast
project revenue, the +9.2% in yield across this period, if
persistent, would drive +6.4% increased yield across its (30-
yr) lifetime. A welcome surprise.

This method of calculating 20-year rate-of-change is applied 
to every site across the ConUS for both GHI and CHICLR.



 

 
Figure 2: Average Insolation: 20-year mean GHI (W/m2) across the 
ConUS interpolated to 0.1° from 1° SA data.  

III. REGIONAL TRENDS ACROSS THE CONUS 

Over the last 20 years, we indicate the typical insolation in 
W/m2 across the ConUS in Figure 2.  As expected, the areas of 
the country with the highest insolation (with the exception of 
Hawaii) are concentrated in the southwest , owing to their 
desert climatology.  Correspondingly, Figure 3 shows the 
long-term average of GHICLR across the ConUS.  The 
distribution follows a similar spatial distribution as GHI but 
the magnitude is much greater owing to the removal of cloud 
reflection and absorption implicit in this metric.   

 
Figure 3: Average Clear Sky Insolation: 20-year mean GHICLR (W/m2) 
across the ConUS interpolated to 0.1° from 1° SA data.  

In the lower left corner of both Figures, the mean for each 
parameter is listed, as is the spatial standard deviation.  As 
evident both visually and by way of these parameters, cloud 
absorption and reflection diminishes solar flux by an average 
of 24% past what is already reduced from the impact of AOD 
and water vapor. These meteorological factors also introduce 
62% more spatial resource heterogeneity than present in the 
resource before such effects are accounted for. 

 
Figure 4: Inter-annual variability: standard deviation of annual 
average GHI relative to 20-year mean GHI (%) across 20 years and 
the ConUS interpolated to 0.1° from 1° SA data.  

Figure 4 illustrates the inter-annual variability in GHI relative 
to the 20-year mean pictured in Figure 2.  As previously 
documented by several authors, the regions experiencing the 
highest amount of inter-annual variability fall in the pacific 
northwest and in the eastern half of the continental US where 
mesoscale cloud formations are most pronounced: cyclonic 
storms to the east and marine layers to the west. By contrast, 
the southwest of the US, with its high desert climate, 
correspondingly sees much less year-on-year change in 
insolation.  

Correspondingly, Figure 5 illustrates the same inter-annual 
variability metric but for GHICLR.  Variations evidenced by 
this metric follow a similar spatial distribution but with far 
lower mean and standard-deviation. 

 

Figure 5: Inter-annual Clear Sky variability: standard deviation of 
annual average GHICLR relative to 20-year mean GHI (%) across 20 
years and the ConUS interpolated to 0.1° from 1° SA data.  

 



 
 

 
Figure 6: 20-year rate-of change in average GHI relative to 20-year 
mean GHI (%) across the ConUS interpolated to 0.1° from 1° SA 
data. Contours identify regions whose 20-year change exceeds mean 
inter-annual variability. 

Figure 6 highlights the 20-year rate-of change inferred through 
linear regression from annual mean GHI values.  Cooler colors 
represent areas which are trending towards less insolation 
while warmer colors represent areas which are generally 
receiving more insolation. 20-year change in GHI is 
distributed heterogeneously though there are some regionally 
notable trends. The trends range from -4% in the northern 
Rocky Mountains to +4% along the west coast and New 
England.  Correspondingly, Figure 7 highlights the 20-year 
change in GHICLR across the same region.   

 
Figure 7: 20-year rate-of change in average GHICLR relative to 20-year 
mean GHICLR (%) across the ConUS interpolated to 0.1° from 1° SA 
data. Contours identify regions whose 20-year change exceeds mean 
inter-annual variability. 

Trends in GHICLR are more homogeneously distributed across 
the region. Clearly evident upon examination of Figure 7, the 
area to the East of the Mississippi has generally seen an 
increase in this metric to the order of 0-1% while the area to 

the West of the Mississippi has seen a trend in the opposite 
direction of roughly equal magnitude.   

Generally, one would have confidence in the trends pictured in 
Figure 6 and Figure 7 if they exceed the corresponding 
interannual variability metric shown in Figure 4 and Figure 5.  
If this significance thresholding is performed, only the 
changes in GHI along the West coast of North America and 
the New England Regions are noteworthy.  For GHICLR, if this 
same thresholding is used, the trends across larger regions of 
the continental US are deemed significant. Contours on 
Figures 6 and 7 geographically highlight regions deemed 
significant by this metric. 

IV. IMPACTS OF TRENDS ON PV SYSTEM YIELD 

As a utility-scale PV developer, one is typically involved in a 
power-purchase agreement with an off-taker; a commercial 
entity or utility.  Historical irradiance, typical meteorological 
year data or typical global year data are all used to assess risk 
and establish probabilistic bounds around expected yield.  
What impacts do these evidenced trends in GHI have on yield 
for a PV system?  In Figure 8, we show the difference in 30-
year yield in kWhAC/kWDC if the identified trends persist over 
this time period relative to if mean GHI remains stable.  As 
can be seen, if the rates of change identified in Figure 4 
persist, a system owner will see between -3.5% and 4% 
difference in yield depending on location.  By contrast, system 
capacity degradation, typically 0.5% per year for c-Si systems 
will drive a cumulative lifetime drop in yield of roughly 
7.4%—relative to if the system did not degrade.   Figure 8 
shows that over the past 20 years, in the northern Rocky 
Mountains, long-term trends in irradiance have had an effect 
on yields to the same order of magnitude as crystalline-silicon 
degradation.   

 
Figure 8: Deviation in cumulative kWhAC output for a 1 kWDC 
horizontal system over 30 years driven by observed trends in 
irradiance relative to if irradiance remained stable.  



 
Correspondingly, systems along the West Coast of the United 
States will have seen an increase in yield of a magnitude that 
roughly halves the effect of system degradation. 

V. EFFECTS OF CHANGING AOD ON INSOLATION 

After cloud cover, AOD is the next most important factor 
affecting the radiative transfer of insolation through the 
atmosphere. Federal environmental regulations have driven a 
dramatic decrease in air pollution in the last four decades, with 
the impact being most pronounced in Eastern region as 
evidenced by Figure 7. To further quantify the impact of 
changes in AOD on the solar resource, we developed three 
irradiance data models that vary by only the AOD input: (1) 
static AOD based on historical climatological averages (year 
to year); (2) monthly timeseries AOD derived from 
SURFRAD measurements; (3) monthly timeseries AOD 
derived from MERRA-2. The difference between the first and 
second datasets as a percentage of annual insolation is shown 
in figure 9. The difference represents the change in insolation 
attributable to changes in AOD. 

 
Figure 9: Contribution of changes in AOD to average annual 
insolation for 3 West and 4 East SURFRAD locations. 

Using this methodology, in the East region, we observe an 
increase in annual GHICLR of 1.4% when comparing 2015-
present from a baseline of 2000-2005. In the West, where 
changes in pollution are less pronounced and are potentially 
offset by increased emissions from wildfires, the change is -
0.4%. The results were validated by calculating the accuracy 
of each data model using SURFRAD-measured GHI as a 
reference. The dynamic AOD input of models (2) and (3) 
perform better and result in negligible bias across the two 
decades of record, effectively eliminating a trend of increasing 
low bias observed in the static model in the East region. 

VI. CONCLUSIONS 

We looked at trends in GHI and GHICLR across the ConUS 
region using twenty two years of hourly data (1998-2019) 
from SolarAnywhere.  We used the inter-annual variability 
metric (standard deviation of inter-annual changes) in GHI 
and GHICLR as a significance threshold to identify regions 
which exhibit a persistent long-term change outside the inter-
annual noise. For GHI, we found that the regions of New 
England, northern Rocky Mountains, coastal Carolina and 
Pacific coast all met this criteria. We used these modeled 
linear trends to determine the 20-year change and calculate 
corresponding impacts on PV system revenue which ranged 
between -3.5% in the Northern Rockies to +4% along the 
Pacific coast. Trends in GHICLR meanwhile, indicative of 
systemic changes in AOD ranged between -1% for almost the 
entire region west of the Mississippi to +1% for nearly the 
entire region east of the Mississippi.   
 
The geographical homogeneity of regions demonstrating 
significant change indicate a probable geophysical driver.  The 
retirement of coal assets in the eastern half of the US and the 
increase in wildfire activity are two drivers that are 
hypothesized to drive this change in AOD and hence GHICLR. 
 
Finally, we used time-synchronous AOD data to identify what 
impact changes in AOD had on horizontal irradiance at the 
surface.  AOD was shown to decrease across the Eastern US 
and increase across the Western US driving opposite trends in 
GHI at SURFRAD sites.  These trends match those shown in 
Figures 6 & 7.  Significant outliers include the majority of the 
Pacific Coast which has increased in GHI despite decreasing 
in GHICLR.  It is hypothesized that this is due to reductions in 
impacts of the coastal marine layer.  A less striking example 
over on the East coast is visible along the Carolina coast.  
Further study of long-term trends and the geophysical 
processes driving these changes is warranted. 
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