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ABSTRACT  
 

This paper describes procedures suitable for the optimal 

combination of ground-based and satellite-based 

irradiance data to reduce the overall uncertainty of the 

solar resource assessment. It presents a case study 

depicting the application of these approaches, and 

illustrates the benefits of proper solar resource tuning 

methods to ensure the production of a robust solar 

resource dataset.  

 

 

1. INTRODUCTION 

 

The long-term production risk of solar project 

developments is largely based on the uncertainty of the 

solar resource. This risk can be reduced through the 

collection of solar resource data. One method is the 

collection of ground-measured data by procurement, 

calibration, installation and operation of an on-site 

irradiance and ancillary meteorological station (Figure 

1). Another approach is to evaluate the solar resource 

via long term satellite-based irradiance measurements, 

utilizing techniques developed by Perez et.al. [1].  

 

By combining these two techniques, it is possible to 

reduce the overall uncertainty of the solar resource 

assessment, thus increasing a solar project’s viability [2]. 

We present new techniques for optimally tuning long-

term reference satellite data with accurate on-site 

ground measurements.  

 

 

2. OBJECTIVE 

 

Ground-based, pyranometer measurements are effective 

at determining site-specific irradiance conditions, while 

satellite-based techniques represent the average 

irradiance condition over the area that corresponds to 

the satellite data image resolution (~1 km2). Even for a 

project site close to a ground station, research shows 

that beyond a 25-km radius from the station, satellite-

based methods are more accurate [3]. Sixteen-plus years 

of satellite data such as SolarAnywhere
®

 Data also 

provide understanding of the expected inter-annual 
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solar resource variability associated with a particular 

solar energy project.  

 

Various methods have been reported for comparing 

these two measurement sources for relative accuracy 

[4]. In this paper, we will describe new techniques for 

resolving the unique sources of error inherent to 

satellite-based irradiances. These techniques will 

incorporate accurate short-term ground measurements 

with long-term satellite-based data, resulting in a low-

uncertainty dataset that is ideal for solar resource 

assessments.  

 

 
Figure 1: Example solar prospecting ground site  

(image courtesy of GroundWork Renewables, Inc.) 

 

 

3. ANALYSIS  

 

We present results from a satellite tuning case study 

consisting of 12 months of high-quality ground 

meteorological data. The data were taken from a ground 

station with redundant secondary standard quality 

pyranometers that received routine, sub-weekly 

maintenance. This station is located in the San Joaquin 

Valley in California (Figure 2), where many utility-scale 

PV plants are being installed.  

 

Ground data collected are used to tune overlapping 

SolarAnywhere satellite-derived irradiance data to help 

reduce the overall long-term solar resource uncertainty. 

SolarAnywhere Data offer 15-plus years of consistent, 

validated, time-series irradiance measurements 

available in resolutions as high as 1 km x 1 km spatial, 1-

minute temporal. Measurements include Global 

Horizontal Irradiance (GHI), Direct Normal Irradiance 

(DNI) and Diffuse Horizontal Irradiance (DIF), along 

with other location-specific weather data. For this case 

study, 10 km, 1-hour SolarAnywhere Data was used 

 

Understanding how satellite-based irradiances are 

derived will help determine how to optimally tune and 

correct systematic biases that can exist.  

 

 
Figure 2: Google map image of the  

San Joaquin Valley region in California 

 

The Perez method of deriving satellite-based irradiance 

starts with a clear sky radiative transfer model that is 

then modulated by an empirically-derived cloud index. 

An example of this process is illustrated in Figure 3.  

 

Errors in satellite model irradiances are introduced at 

both the clear sky modeling point (due to aerosol optical 

depth (AOD) and water vapor discrepancies), and during 

the cloud indexing process. Ground vs. satellite 

comparisons during cloudy conditions are often skewed 

by the pinpoint ground vs. area‐averaged values from 

satellite cloud data, and are not reliable in correcting 

cloudy satellite-based irradiance errors.  
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Figure 3: Example satellite-derived cloud index image 

 

The errors that are subject to correction are clear sky 

model-based, and primarily stem from regional AOD 

variances. Separating out the clear sky bias from the 

overall satellite bias is critical to the proper satellite data 

tuning process.  

 

 

3.1 Clear Sky Bias Corrections 

 

In this case study, the overall Mean Bias Error (MBE) 

observed for 12-months of 10 km SolarAnywhere GHI 

data is -4.63%, and the clear sky MBE is -4.18%. The 

clear sky MBE is calculated by using only the hours that 

are within 20% of SolarAnywhere clear sky GHI data. It 

is essential to ensure clear sky threshholding does not 

result in significant data loss in regions where more day-

to-day cloudiness occurs, such as over the Eastern U.S.  

 

To further tune the SolarAnywhere GHI data, 

Kolmogorov-Smirnoff Integral (KSI) goodness-of-fit test 

[5] is used to minimize the cumulative distribution 

between the two. The initial KSI between ground-

measured and satellite-derived GHI is 1.02%. The aim in 

the satellite data tuning process is to minimize both the 

clear sky MBE and KSI to provide the ideally tuned solar 

resource assessment.  

    

 

3.2 Seasonal and Dual-Sliding Window Corrections 

 

The satellite-based GHI dataset at this location exhibits a 

larger clear sky bias during the summer months than 

during the winter months (Figure 4) due to seasonal 

variations in regional AOD. To correct for these uneven 

biases, a sinusoidal-based seasonal correction (Figure 5) 

is applied to help align the overall satellite-derived GHI 

data bias corrections.  

 

Figure 4 shows the monthly breakdown of clear sky MBE 

adjustments, with January experiencing a 5.1% 

correction and June experiencing a 2.4% correction. 

With the correction, the annual clear sky MBE decreases 

from -4.18% to nearly zero.  

 

Figure 4 also shows the outcome of a straight clear sky 

bias correction, which would result in a sub-optimal 

monthly tuning. Seasonal tuning should only be applied 

to ground data sets consisting of a minimum of 12 

months of data so all seasons can be properly gauged.  

 

 

 

 
Figure 5: The sinusoidal-based seasonal bias modifier  

used for this case study 

 

In addition to correcting for observed clear sky biases, a 

dual-sliding window technique is applied to correct for 

Figure 4: Monthly (Jan – Dec in descending order) clear sky 

MBE and corresponding bias corrections.  
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any remaining systematic errors that could affect the 

cumulative distributions between ground-measured GHI 

and SolarAnywhere GHI. By applying proper dual-sliding 

window parameters, the KSI obtained by integrating the 

absolute difference between the two decreases from 

1.02% to 0.28%.  

 

Figure 6 shows the cumulative distributions for the 

ground-measured GHI, the initial SolarAnywhere GHI, 

and the tuned SolarAnywhere GHI. The tuned 

SolarAnywhere GHI data has a much closer cumulative 

distribution to ground-measured GHI data, and a lower 

uncertainty than the initial SolarAnywhere GHI data. 

 

 
Figure 6: Cumulative distributions of ground-based,  

initial and tuned SolarAnywhere GHI data 

 

Figures 7 (pre-tuned) and 8 (post-tuned) show scatter 

plots of 12-months of ground-measured GHI versus 

satellite-derived GHI. After eliminating clear sky MBE 

and minimizing KSI, we observed a tighter distribution 

of data centered along the one-to-one line.  

 

 
Figure 7: Scatter plot of ground GHI and pre-tuned 

SA GHI 

 

 
Figure 8: Scatter plot of ground GHI and post-tuned 

SA GHI 

 

 

3.3 Satellite Irradiance Rebalancing 

 

Once the satellite-based GHI data has been tuned, it is 

essential to relate any changes in GHI to the DNI (beam) 

and DHI (diffuse) components of the satellite-based 

irradiance dataset. This will ensure accurate translation 

to plane-of-array irradiance (POAI) within the PV energy 

simulation process.  

 

The following equation governs the GHI to other 

component relationship that should be preserved during 

the overall ground/satellite data tuning process: 

 

GHI = DNI*cos (Z) + DHI (Z is the solar zenith angle) 

 

Tuned satellite-based GHI data should then be translated 

into rebalanced DNI and DHI components using the 

same processing from which the original DNI and DHI 

components were derived.  
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Figures 9 and 10 illustrate two possible results of the 

satellite irradiance rebalancing at this location on a clear 

summer day. Figure 9 shows results when one attempts 

to preserve the original GHI/DHI ratio.  

 
Figure 9: Clear sky summer day irradiances showing before 

(solid) and tuned GHI (blue dashed) and rebalanced (dashed) 

DHI. Note that there is no change in DNI.  

 

This results in an unrealistically high increase in DHI 

with no corresponding change in DNI.  Figure 10 shows 

the results when DNI is properly recalculated from the 

tuned GHI data. This rebalancing results in an increase in 

DNI with a subtle decrease in DHI. This correct 

rebalancing methodology ensures that any changes 

imparted to GHI are properly translated to the DNI and 

DHI components of the satellite-based resource data to 

prevent unrealistic translation to plane-of-array 

irradiance within PV simulation software (e.g. PVsyst). 

 

 
Figure 10: Clear sky summer day irradiances showing 

 before (solid) and tuned GHI (blue dashed) and recalculated 

(dashed) DNI and DHI (dashed). 

3.4 Ancillary Meteorological Data Tuning 

 

Site-specific air temperature and wind speed data are 

also required for accurate PV energy simulations. 

Accurate 2 meter ground air temperature measurements 

can be used to remove biases present in modeled air 

temperature data. National Digital Forecast Data (NDFD) 

[6] and North American Regional Reanalysis (NARR) [7] 

2 meter dry-bulb temperature data are used in this case 

study.  

 

Figure 11 shows that NDFD model-derived air 

temperatures at this location tend to be lower than 

ground-measured air temperatures during the day and 

higher at night. These offsetting biases result in an 

overall MBE near zero. Since solar energy production is 

only influenced by daytime temperatures, it is important 

to correct for daytime MBE and not overall MBE. NARR 

temperature data exhibits a high bias at this location 

during all hours of the day. NARR is the underlying 

source temperature data in the NREL Solar Prospector 

site.  

 

In this case study, daytime bias corrections of +0.8oC 

(NDFD) and -2.6oC (NARR) are derived, which will result 

in better-quality PV energy simulations. An overall-

based MBE analysis would have resulted in no 

correction being applied to the NDFD data, which would 

have contributed to an over-prediction of energy during 

the PV simulation process. A +2oC swing in temperature 

results in roughly a 1% reduction in energy output 

within PVsyst for most PV modules. Similar methods can 

be used to correct wind speed biases, though none were 

noted in this study. 
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Figure 11: Example measured (red), NDFD (blue) and NARR 

(green) 2m dry-bulb temperature observations over several 

days during the month of May.  

 

 

3.5 Final Wrap-up 

 

All corresponding satellite-based and ancillary 

meteorological data tunings are then applied to the long 

term satellite and meteorological datasets from which 

needed typical GHI year (TGY) or typical meteorological 

year (TMY) files can be carved out. Additionally, 

financially-driven long term project risk analysis (e.g., 

P90, etc.) can be performed ensuring ideal project 

feasibility for all parties involved.  

 

 

 

4. CONCLUDING REMARKS 

 

The best investment decisions begin by understanding 

the characteristics of your solar resource. We have 

presented a new set of methods for the optimal tuning of 

satellite resource data with accurate ground solar 

resource data. Once satellite-based GHI data are tuned, 

accompanying DNI and DHI data must also be 

rebalanced to preserve the overall irradiance 

relationship. Finally, ancillary meteorological data 

tuning should focus on daytime bias corrections.  

 

Proper application of these various tuning strategies will 

reduce the overall uncertainty of the solar resource 

assessment, and provide a robust, long-term, satellite-

based solar resource dataset that will result in confident 

PV energy simulations and ensure the viability of a PV 

project.  
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