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Figure 1: Cumulative Margin of Error vs. Solar Project Lifetime

Executive Summary
Accurately predicting solar photovoltaic (PV) system performance is critical for all solar 
industry participants. Third-party owners, system installers and independent engineers rely 
on accurate performance evaluations for quoting, performance guarantees and to assess 
financing potential. For these applications, small margins of error in performance modeling 
can have significant financial impacts, as suggested in Figure 1.

Scenario 2 represents a project 
in which projected return on 
investment is not achieved over 
the life of the project. Scenario 1 
represents a system producing more 
than projected. While at first glance 
under-prediction may seem positive, 
it can affect upfront decisions to 
proceed with a project even though 
it would be profitable in Scenario 
1. A customer may decide against 
installing solar, or an investor may 
avoid involvement based on lower-
than-actual performance estimates.
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Accurate performance modeling hinges on accurate solar resource data. NREL’s Typical 
Meteorological Year data (previously TMY2, now TMY3) has long been considered the 
industry standard for solar resource data. While TMY3 data may be adequate for lead 
generation and initial estimates, it falls short of the precision required for lease and PPA 
quoting, performance guarantees and site evaluations. 

This whitepaper demonstrates how the use of TMY3 data for applications requiring 
precise PV performance estimates creates avoidable performance risk, and jeopardizes 
project and portfolio profitability. Case study examples illustrate how alternatives such 
as SolarAnywhere® Typical Global Horizontal Irradiance [GHI] Year (TGY) satellite-based 
irradiance data can provide the precision and consistency required to support profitable, 
low-risk projects.
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An Introduction to Solar Resource Datasets
The solar industry—including distributed (residential and commercial) and utility-scale 
developers—relies on a number of estimating tools to make decisions about investing in 
solar at specific sites. These tools are vitally important to the industry, and the output is 
used to determine everything from the design and cost of a rooftop system, to the financing 
terms for utility-scale systems. Accurate prediction of a PV system’s performance over its 
lifetime can mean the difference between a profitable project and losses ranging from 
thousands (for small- to medium-scale distributed systems) to millions of dollars (for 
utility-scale systems).

The most popular solar estimation tools, including PVWatts®, System Advisor Model (SAM), 
PVsyst, Clean Power Estimator® and PowerBill® will return inaccurate results if the solar 
resource (i.e., irradiance) dataset used does not accurately represent the solar resource for 
the specific site being analyzed. 

Figure 2 illustrates the inputs that go into a typical PV system performance model. Most 
inputs are site-specific and easily measurable, such as PV system specifications and array 
orientation. However, obtaining reliable solar resource information for a specific site can 

Figure 2: Modeling PV System Performance
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be problematic. Accurate modeling requires a long-term history of a site’s solar resource 
(ideally greater than 15 years). This makes ground-based measurement using on-site 
equipment time- and cost-prohibitive.

For this reason, the solar industry has turned to the use of modeled solar resource datasets 
such as TMY3, produced by the National Renewable Energy Laboratory (NREL), and 
SolarAnywhere Typical GHI Year (TGY), produced by Clean Power Research. 

Not all solar resource datasets are created equal, however. When precise, high-accuracy 
performance modeling is needed to support quoting, performance guarantees and to 
assess financing potential, third-party owners, system installers and independent engineers 
require the highest-quality solar resource data available to accurately predict system 
performance and reduce project risk.

High-accuracy solar irradiance datasets have the following characteristics (these will be 
discussed in detail in the following section):

1 . Consistent data - Deriving a solar resource dataset based purely on solar irradiance 
(GHI), and on a consistent, single-source of modeled irradiance data ensures that 
the most representative monthly irradiance data is chosen to construct a typical 
year dataset.

2 . Current data - Long-term datasets that include solar resource data from the most 
recent year reflect regional weather trends such as air quality and drought. 

3 . High spatial resolution and continuity - To account for regional and micro-climate 
variability, high spatial resolution is critical for project sites that do not coincide 
with the location of the data site.

This paper explains the differences between NREL TMY3 and SolarAnywhere TGY datasets, 
and highlights the positive impact that using the correct solar resource data can have on 
quoting, performance guarantees and site evaluation—all applications that require precise 
performance modeling.
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Dataset Fundamentals
There are many factors involved in the creation of typical year datasets, and understanding 
how each impacts the resulting typical year file is important to determining which dataset 
is appropriate for a particular application. This section explains how typical year files are 
constructed, and provides a brief history of the two typical year datasets discussed in this 
paper: NREL TMY3 and SolarAnywhere TGY. 

Construction of a Typical Year File
Typical year solar resource datasets like NREL TMY3 and SolarAnywhere TGY provide one 
year of hourly irradiance data that can be used to simulate anticipated annual performance 
over the life of a PV system. Typical year datasets are constructed with hourly data that is 
most representative of the solar resource at a given location over a historic time period 
that spans 10 years or more. 

To create a typical year dataset, monthly blocks of sequential, hourly data are pieced 
together to form an ‘8760’ data file (8760 refers to the number of hours in a 365 day 
year). The historic month that most closely matches the long-term average for that month 
is selected for the dataset. In this way, the most representative data for each month is 
included in the typical year file. This approach also retains short-term variable weather 
patterns that would otherwise be muted if a simple average were used for each hour of the 
year.

For example, Figure 3 illustrates a typical year dataset construction. In this case, the dataset 
includes data from January 2000, February 2008, March 2006, and so on.

Historical Data

Typical Year

Jan 2000 Feb 2008 Mar 2006 Apr 2012 May 1998 Jun 2010 Jul 2002 Aug 2014 Sep 2013 Oct 2004 Nov 2004 Dec 1999

1998 2000 2002 2004 2006 2008 2010 2012 2014

© 2015 Clean Power Research

Figure 3: Example of Generic Typical Year Dataset Construction
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The Path to Solar Energy: A History of TMY3
The solar industry began using Typical Meteorological Year (TMY) datasets produced by 
the National Renewable Energy Lab (NREL) in the early 1980’s. Originally developed to 
facilitate solar heating and cooling system simulations for buildings, NREL TMY data files 
(TMY, TMY2 and TMY3) are based on weather traits that influence overall building heating 
and cooling efficiency, including wind, temperature, humidity and solar resource.1 

NREL TMY solar irradiance datasets were originally derived solely from NREL’s 
Meteorological-Statistical (METSTAT) model.2  This model incorporates both human and 
ground-based sensor observations, and estimates of cloud cover at single point locations.

Since the first NREL TMY dataset was released in 1977, NREL has released two additional 
versions: TMY2 in 1994, and TMY3 in 2007.  As shown in Figure 4, data files for TMY3—the 
most common version used today—exist for 1,020 data sites in the continental United 
States, Alaska and Hawaii, and are derived from data through 2005.

Steps for Constructing Representative Solar Resource Files 
1) For each month in the year (i.e., Jan., Feb., March, etc.), irradiance data is 

averaged across all the years included in the dataset (i.e., in the case of TMY3, 
1991 through 2005 for most sites). 

2) The historic month that most closely matches the long-term average for that 
month is selected for the dataset.

3) Hourly data from the most representative twelve selected months is combined 
to form a representative “8760” typical year file.

1 T. Freeman. 1979. “Evaluation of the “Typical Meteorological Years” for Solar Heating and Cooling System Studies Final 
Report.” Altas Corporation.
2 Maxwell, E.L., 1998. “METSTAT-The Solar Radiation Model Used in the Production of the National Solar Radiation 
Database (NSRDB).” Solar Energy, 62(4), 263-279
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All TMY3 sites are not equal
Each TMY3 data site is classified based on the quantity and quality of historical data, as 
shown in Table 1. Class I sites offer the lowest uncertainty, being derived from 24 years of 
data with very little data missing. Class II sites are derived from just 12 years of data and 
have more interpolated data than Class I sites. Class III sites have the highest uncertainty 
due in large part to having large 
time periods with missing data. 
Bottom line: 78 percent of the 
TMY3 dataset is from high-
uncertainty Class II and Class III 
sites sampled from just 12 years of 
historical data.

In addition to the uncertainty 
inherent in the three TMY3 classes, 
TMY3 datasets contain a mix of 
METSTAT and satellite-modeled 
irradiance data. This inconsistency 
in data sources, which will be 
discussed in more detail in the 
Consistent Data section below, 
introduces additional biases that 
contribute to uncertainty.

Measurements with Satellite Data: A History of SolarAnywhere
With the availability of reliable geostationary satellite imagery along with improved 
computing resources in the early 2000’s, a new method of modeling solar irradiance was 
developed by Dr. Richard Perez of the University at Albany (State University of New York). 

Figure 4: Geographic Dispersion of TMY3 Sites

% of Sites Uncertainty # of Years Sampled

Class I 22% Lowest 24

Class II 62% Higher 12

Class III 16% Highest 12

Table 1: Not All TMY3 Data Is Created Equal
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Evolution of TMY Observations
Historically, humans reported hourly cloud cover observations at TMY3 sites. Through the 1990’s and early 
2000’s, these human observations were phased out in favor of National Weather Service Automated Surface 
Observing System (ASOS) observations of cloud cover. With this transition, there was a notable decline in the 
accuracy of METSTAT data.

Figure 5, which shows METSTAT and Perez satellite model data for Fresno,  Calif., illustrates the drastic 
fall in METSTAT GHI values in the early 2000’s–even below volcano-influenced periods that resulted from 
eruptions of El Chichón (1982-1984) and Mount Pinatubo (1991-1994) that led to significant reductions 
of surface irradiance.3  This is evidence of the negative effect that switching to ASOS equipment for cloud 
measurements had on the accuracy of METSTAT data. This decline in METSTAT model accuracy was a prime 
motivator for incorporating Perez satellite model data (represented by the orange line in the figure below) 
from 1998-2005 into the TMY3 dataset.4

3 S. Wilcox and W. Marion. 2008. “Users Manual for TMY3 Data Sets.” Page 18. National Renewable Energy Laboratory.
4 S. Wilcox, et. al. 2007. “Completing Production of the Updated National Solar Radiation Database for the United States.” 
National Renewable Energy Laboratory, etc.
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Figure 5: METSTAT and Perez satellite model annual average GHI for the Fresno Yosemite 
International Airport TMY3 location
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Dubbed the “Perez satellite model,” this solar resource model offers full coverage across the 
United States, and produces temporally- and spatially-consistent data.

Today, SolarAnywhere time-series irradiance data based on the most current Perez satellite 
models are available from Clean Power Research under an exclusive partnership with the 
University at Albany. To generate the irradiance measurements that today comprise the 
product known as SolarAnywhere Data, hourly satellite images are processed to provide 
commercially available solar resource data that is highly accurate according to independent 
studies from organizations such as the University of California, San Diego.5

SolarAnywhere TGY is constructed from more than 16 years of up-to-date SolarAnywhere 
Data that includes data as current as the most recent complete year. SolarAnywhere TGY 
datasets are unique in that they have been designed specifically with solar PV modeling 
in mind. They employ a TGY methodology that ensures that consideration of other 
meteorological factors such as wind and temperature do not result in the selection of 
months with atypical irradiance patterns. Consistency in SolarAnywhere datasets is further 
preserved by the use of a single model (i.e., Perez) in the modeling of solar irradiance data. 

Since its inception, SolarAnywhere coverage has expanded to include the continental 
United States, Hawaii, Mexico and parts of Canada. Today, SolarAnywhere provides historical 
data as well as typical year data. 

With spatial resolutions as high as 1 km, SolarAnywhere is not site restricted, which 
enables an accurate representation of available irradiance at specific project sites that may 
not coincide with TMY3 stations. This is particularly important for coastal, mountainous and 
island locations that often exhibit sharp spatial gradients in solar resource.

The Relationship between TMY3 and the National Solar Radiation Database
TMY3 files were distilled from meteorological data contained within the NREL National Solar Radiation 
Database (NSRDB). Contrary to common perception, less than two percent of the underlying solar irradiance 
data in the NSRDB comes from ground-based measurements. 

The NSRDB is primarily composed of solar irradiance data derived from the METSTAT model. Satellite-based 
irradiance measurements from the Perez satellite model were later used to replace METSTAT irradiance data 
in TMY3 files between 1998 and 2005.

5 Jamaly, Mohammad, and Kleissl, Jan. 2012. “Validation of SolarAnywhere Enhanced Resolution Irradiation in California.” 
Department of Mechanical and Aerospace Engineering, University of California, San Diego.
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Choosing a Solar Resource Dataset: Key Considerations
When selecting a dataset for use in modeling PV output, there are three key considerations. 
Data should:

1 . Be consistent

2 . Be current

3 . Have high spatial resolution and continuity

In the following sections, we’ll examine how use of solar irradiance datasets with these 
characteristics leads to lower uncertainty in estimating future output of solar PV systems.

Consistent Data
Reliable typical year data is dependent on the selection of the most representative solar 
resource month, irrespective of other environmental factors. Ambient temperature and wind 
speed are factored in independently by the solar estimation tools highlighted in Figure 2 
on page 1. NREL TMY data files were originally developed for analyzing the impacts of solar 

Distinction Between TMY2 and TMY3 Datasets
While TMY3 is the most current dataset of its kind from NREL, its predecessor, TMY2, is still used by some solar 
industry participants. The content of this paper focuses on TMY3; however, the concepts addressed in “Choosing a 
Solar Resource Dataset: Key Considerations” also apply to TMY2 data with the following distinctions:

• Consistent data - TMY2 files were distilled solely from METSTAT modeled data spanning the period from 
1961–1990. Perez satellite data are only available after 1998.

• Current data - Because data from TMY2 is 25 to 55 years old, near term weather trends such as air quality and 
drought are not accounted for.

• High spatial resolution and continuity - The TMY2 dataset contains data from only 239 sites, which drastically 
reduces spatial resolution.

6 T. Freeman. 1979. “Evaluation of the “Typical Meteorological Years” for Solar Heating and Cooling System Studies Final 
Report.” Altas Corporation.
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Index TMY Weighting TGY Weighting

Max Dry Bulb Temp 5%

Min Dry Bulb Temp 5%

Mean Dry Bulb Temp 10%

Max Dew Point Temp 5%

Min Dew Point Temp 5%

Mean Dew Point Temp 10%

Max Wind Velocity 5%

Mean Wind Velocity 5%

Mean Global Horizontal Irradiance (GHI) 25% 100%

Mean Direct Normal Irradiance (DNI) 25%

Table 2: Weighting of Meteorological Parameters Used in Typical Year Processing

heating and cooling on a building’s performance,6  and therefore include the influence of 
multiple weather traits such as wind, temperature, humidity and solar resource, as shown in 
Table 2. Of the ten indices used to generate TMY3 files, only two are components of solar 
irradiance, and these are given only a 50 percent weighting factor. As a result, weather 
factors such as humidity, temperature and wind can directly influence the typical month 
selection process, leading to atypical solar months being selected for TMY3 files. 

Similarly, the use of more than one source of modeled irradiance data can lead to increased 
uncertainty in “8760” files. TMY3 sites contain irradiance data modeled by both the 
METSTAT and the Perez satellite models. 

Recognizing the accuracy and quality offered by Perez satellite modeled irradiance data, 
NREL incorporated satellite data to enhance the overall quality of the TMY3 dataset. To 
generate TMY3 datasets, NREL first selected the typical months based entirely on METSTAT 
irradiance data. Once the TMY3 distillation process was completed, NREL replaced 
METSTAT-based irradiance data with Perez satellite-based irradiance data for all TMY3 
typical months chosen between 1998 and 2005. As a result, nearly all of the TMY3 sites 
contain a mix of both METSTAT and satellite-based irradiance data, as illustrated by the 
examples in Figure 6.
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After this replacement, however, TMY3 data was not re-processed to ensure that the most 
representative months of data were included in the dataset. The intent of incorporating 
data from the Perez satellite model was to improve the accuracy of TMY3 files by replacing 
METSTAT data that had demonstrated declining accuracy (see “Evolution of TMY3 
Observations” on page 6). However, supplanting METSTAT data in this manner without re-
executing the typical year selection process leads to inclusion of irradiance data that is not 
representative of the typical month. This is true regardless of the class. 

In contrast to TMY3 data, SolarAnywhere TGY datasets are based solely on SolarAnywhere 
satellite-derived data. Exclusive use of the most current version of the Perez satellite 
model irradiance data is central to the accuracy of SolarAnywhere TGY irradiance data. 
This consistency ensures that the most representative monthly irradiance data are chosen 
to construct a typical year dataset, thereby increasing accuracy in PV system performance 
modeling.

The following case study from the Minneapolis / St. Paul region of Minnesota demonstrates 
how the construction of TMY3 files can lead to the inclusion of atypical irradiance data, and 
an inaccurate PV production estimate as a result. 

Figure 6: Example TMY3 Irradiance Data Sources (METSTAT and Perez Satellite)
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Figure 8: SolarAnywhere TGY Gridded 
10 km Annual Average GHI in the 

Minneapolis/St . Paul Region

Figure 7: TMY3 Nearest Neighbor 
Gridded 10 km Annual Average GHI in the 

Minneapolis/St . Paul Region
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Minneapolis/St. Paul Case Study: An example of poor TMY3 monthly choices
This case study highlights how the high variance of TMY3 data within the Minneapolis/St. 
Paul region can lead to significant variations in estimated production. Figure 7 and Figure 
8 provide a comparison of the annual average GHI predicted by TMY3 and SolarAnywhere 
TGY. In Figure 8, SolarAnywhere TGY 10 km gridded data form the background of the 
image (the orange to red tiles), and TMY3 data from the five regional TMY3 data sites 
are superimposed for comparison (filled circles). The color within each of the circles 
corresponds to annual average GHI as shown in the scale below the image.

As can be observed in Figure 7, the regional GHI variance among the five TMY3 stations 
is approximately 23 W/m2. This is substantially larger than the regional GHI variance of 
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The Nearest Neighbor Approach
When using TMY3 data, the nearest neighbor method of selecting which data site to use for a particular project is 
typically applied. This methodology simply extrapolates TMY3 data from the nearest data site to the PV project site, as 
shown in Figure 7.  Figures 8 and 9 illustrate how TMY3 annual average GHI compares to SA TGY annual average GHI. 

NREL advises that a distance of 25 km (which can decrease according to local topographical conditions) is the 
maximum distance for which a TMY3 station should be used to evaluate a project site.7 When using the nearest 
neighbor approach, the TMY3 station may be outside of the 25 km recommended maximum.

7 J. Dean, A. Kandt, K. Burman, L. Lisell and C. Helm. 2009. “Analysis of Web-Based Solar Photovoltaic Mapping Tools.” 
National Renewable Energy Laboratory.

approximately 5 W/m2 seen in the SolarAnywhere TGY gridded dataset shown in Figure 8. 
Figure 9 combines the data displayed in Figure 7 and Figure 8 to illustrate the absolute 
difference between SolarAnywhere TGY and TMY3 for each 10 km grid, with light areas 
representing little to no difference and darker areas representing higher difference.
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TMY3 Minneapolis / St. Paul Int'l Airport Class I 7,282 kWh Base

Variance
Annual

ProductionClass

Base

TMY3 South St. Paul Muni Class III 7,180 kWh -1.4%
TMY3 Flying Cloud Class II 7,044 kWh -3.3%
TMY3 St. Paul Downtown Airport Class II 6,606 kWh -9.3%
TMY3 Minneapolis / Crystal Class II 6,198 kWh -14.9%

2.71%
Minimum{SolarAnywhere TGY Range

 for the 5 TMY3 locations
7,044 kWh

Maximum 7,235 kWh

outlier months

© 2015 Clean Power Research

Production estimates based on a 5.5 kW DCSTC south-facing system with a 30° tilt and 
and 10% system losses, consisting of 25 220W modules and an SMA 5 kW inverter.

Figure 10: Monthly Average GHI of TMY3 and SolarAnywhere TGY Gridded 
10 km Data in the Minneapolis / St . Paul Region

Figure 10 illustrates how the variance between the TMY3 datasets impacts production 
estimates. In this example, TMY3 production estimates vary by as much as 15 percent from 
the baseline TMY3 Class I site at the Minneapolis/St. Paul International Airport.

As can be seen in the chart, production estimates using TMY3 data from three of the TMY3 
stations align reasonably well with SolarAnywhere TGY production estimates throughout 
the year. However, outlier months can clearly be seen for the St. Paul Downtown Airport 
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(March) and the Minneapolis/Crystal (July) TMY3 stations. This is illustrative of the effect 
of basing Class II and III sites on 12 years of data, which leads to a greater likelihood that 
the TMY3 weighting process will result in the selection of outlier months. This effect is less 
pronounced for Class I stations that have 24 years of data.

Current Data
Both TMY3 and SolarAnywhere TGY are derived from long-term datasets containing 10-
plus years of data. As shown in Figure 11, TMY3 files for Class I sites are derived from 24 
years of historical data modeled between 1976 and 2005, and most TMY3 files for Class 
II/III TMY3 sites contain 12 years of data modeled between 1991 and 2005 (excluding 
atypical months resulting from the volcanic eruptions of El Chichón in 1982-1984, and 
Mount Pinatubo in 1991-1994). SolarAnywhere TGY data files are based on 16 years of 
irradiance data from 1998 through the most recent complete calendar year (e.g., 2014).

A key difference between TMY3 and SolarAnywhere TGY is the consideration of near-
term data. While the latest irradiance data included in TMY3 files were modeled through 
2005, SolarAnywhere TGY is based on data as current as the most recent complete year to 
account for near-term climate variations. 

Year-over-year, the advantage of including near-term data becomes more pronounced, 
as SolarAnywhere is able to adapt to regional weather trends and rapidly changing 
environmental conditions such as air quality.

Figure 11: Typical Year Dataset Timeline
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High Spatial Granularity and Continuity
Accounting for regional climate variability is critical to accurately predicting PV system 
performance. This is true not only for islands and coastal regions, but for any inland 
region that exhibits similar microclimatic characteristics, such as within the mountainous 
California Coast Ranges and the Front Range of Colorado. In order to capture micro-climate 
characteristics, data with high-spatial resolution is required. 

The site-restricted nature of TMY3 data is a severe limitation. As noted by NREL, TMY3 
irradiance data should not be used for project sites more than 25 km removed from the 
nearest TMY3 station.8  Adhering to this recommendation, TMY3 irradiance data is only 
valid for approximately 24 percent of the United States (excluding Alaska) when taking into 
account all TMY3 sites. When considering only the most accurate TMY3 data at Class I sites, 
only 6 percent of the United States is covered. Figures 12 and 13 illustrate SolarAnywhere 
TGY 10 km coverage as compared to TMY3 coverage.

With SolarAnywhere TGY gridded data available in resolutions as high as 1 km, locational 
deficiencies induced by low density TMY3 data are eliminated. The case studies that follow 
for San Diego, Calif., and Oahu, Hawaii, will demonstrate how large inaccuracies can result 
from extrapolating irradiance data to nearby project locations. 
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Figure 12: TMY3 Annual Average GHI Figure 13: SolarAnywhere TGY 
Annual Average GHI

8 J. Dean, A. Kandt, K. Burman, L. Lisell and C. Helm. 2009. “Analysis of Web-Based Solar Photovoltaic Mapping Tools.” 
National Renewable Energy Laboratory.
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San Diego Case Study: Western U.S. Coastal Gradients
In the San Diego region, the solar resource is lowest near the coast and improves toward 
inland regions. Figures 14 and 15 show that six TMY3 stations are congregated near the 
coast, with the next available station located approximately 90 miles inland in the Imperial 
Valley region of California. 

Figure 14: TMY3 Nearest 
Neighbor Gridded 10 km Annual 
Average GHI in San Diego, Calif .

Figure 15: SolarAnywhere TGY 
Gridded 10 km Annual Average 

GHI in San Diego, Calif . 

Figure 16: Average Annual Difference 
between SolarAnywhere TGY and TMY 
Nearest Neighbor in San Diego, Calif . 
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With this uneven TMY3 coverage distribution, it’s very difficult to accurately evaluate the 
solar resource for sites located between the coastal and inland region where a sharp solar 
resource gradient exists. The inability of TMY3 data to capture these gradients is clearly 
demonstrated in Figure 16, which displays the difference between between SolarAnywhere 
in Figure 15 and TMY3 in Figure 14.  

Both 10 km and 1 km SolarAnywhere TGY data sources provide accurate coverage between 
the lower coastal solar resource and the much higher inland solar resource. Due to the 
sharp gradients in coastal California topography, use of 1 km SolarAnywhere TGY data 
shown in Figure 17 provides the most reliable solar resource assessments.

Figure 17: Comparison of Gridded 1 & 10 km SolarAnywhere TGY 
and TMY3 Annual Average GHI in San Diego, Calif .

200 210 220 230 240 250
Annual Average GHI (W/m

1 kilometer resolution 10 kilometer resolution

)2

200 210 220 230 240 250
Annual Average GHI (W/m )2

© 2015 Clean Power Research© 2015 Clean Power Research

I

II

III

TMY3 Class 1 Site

TMY3 Class 2 Site

TMY3 Class 3 Site

I

II

III

TMY3 Class 1 Site

TMY3 Class 2 Site

TMY3 Class 3 Site



 18

Oahu, Hawaii Case Study: Island Climates
Similar to San Diego, the lack of TMY3 stations throughout the Hawaiian Islands 
injects high uncertainty when it comes to evaluating solar energy potential. The 1 km 
SolarAnywhere TGY data shown in Figure 19 provides evidence of the impact of topography 
on the solar resource of Oahu. The TMY3 representation of Oahu’s solar resource in Figure 
18 provides a stark contrast to the variations illustrated by SolarAnywhere TGY data.

Not only is TMY3 data unable to capture the solar resource gradients observed throughout 
the island’s interior, coastal gradients in areas immediately adjacent to the TMY3 stations 
are misrepresented as well. Figure 20 shows that using TMY3 data on Oahu can drastically 
misrepresent solar resource potential, even for project sites very near to TMY3 stations.

140 160 180 200 220 240
Annual Average GHI (W/m )2

II

II I

© 2015 Clean Power Research

140 160 180 200 220 240
Annual Average GHI (W/m )2

II

II I

© 2015 Clean Power Research

I

II

III

TMY3 Class 1 Site

TMY3 Class 2 Site

TMY3 Class 3 Site

Figure 19: SolarAnywhere TGY 
Gridded 1 km Annual Average 

GHI in Oahu, Hawaii

Figure 18: TMY3 Nearest 
Neighbor Gridded 1 km Annual 
Average GHI in Oahu, Hawaii
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Figure 20: Average Annual Difference 
between SolarAnywhere TGY and TMY 
Nearest Neighbor in Oahu, Hawaii
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Maximize Returns by Choosing the Right Dataset
TMY3 data has been invaluable in supporting the development of solar throughout the 
United States, and it will continue to be a valuable low-cost tool for approximating solar 
resource potential. However, as the case studies in this paper illustrate, TMY3 presents 
potentially severe limitations around accuracy and geographic specificity for applications 
that require precise solar resource estimation. These limitations can propagate substantial 
negative effects to a project’s risk assessment and return on investment.

For those banking their bottom line profits on actual solar production matching expected 
production, consistent, current solar resource data is critical. Satellite-derived solar 
resource data offers these characteristics, along with the high spatial granularity needed to 
estimate production in microclimates.



 20

Use Cases TMY3 SolarAnywhere TGY

Lead Generation / Initial Estimates  

Lease and PPA Quoting 

Setting Performance Guarantees 

Utility-scale Site/Asset Evaluation 

Which Dataset Should I Use?

How to Get Started Using SolarAnywhere TGY
Clean Power Research’s APIs offer exclusive programmatic access to PV production 
simulations using SolarAnywhere TGY datasets. This scalable, enterprise-grade software-as-
a-service (SaaS) also includes other calculations critical to solar quoting, including electric 
bill and incentive savings along with financial modeling. For more information on the 
Clean Power Research APIs, please visit http://www.cleanpower.com/solutions/software/ or 
contact info@cleanpower.com to get started. 

Utility-scale developers and independent engineers looking for site-by-site SolarAnywhere 
TGY data downloads, please visit www.solaranywhere.com for more information on this 
service or contact info@cleanpower.com to get started with a subscription.
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