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Abstract  —  High quality satellite solar irradiation data is 
used throughout the solar industry to perform energy estimates.  
The uncertainty of the raw satellite data has been shown to be 

low.  Ground data is often used to correct satellite data but 
determining the uncertainty of the final dataset could be 
challenging since the traditional statistical uncertainty and error 

calculation methods have proven to be unrepresentative.  In this 
paper the limitations of traditional statistical methods are 
explored along with alternative approaches to calculate a more 

representative uncertainty value for a long term dataset resulting 
from ground corrected satellite data.   

I. INTRODUCTION 

The use of satellite data has become more prevalent in the 

solar industry for energy estimates and continues to gain 

popularity.  Integration of satellite data into public tools such 

as PVWatts and NREL SAM has helped shift the industry 

away from sparsely populated typical meteorological year 

(TMY) datasets to satellite based solar resource files.  Clean 

Power Research (CPR) is a leading vendor of high quality 

satellite data “SolarAnywhere
®

” processed using the latest 

algorithms from Dr. Richard Perez.  SolarAnywhere datasets 

do not have any ground corrections applied, which allows the 

end user to perform at their discretion.  The reported U95 

uncertainty of the raw satellite data is 5%, and by performing 

ground corrections there is an opportunity to remove local and 

seasonal biases and lower the uncertainty. 

There are many methods used to perform a ground-satellite 

data correction.  Simple linear regression can be used with 

either hourly or daily data to correct for bias present between 

the ground and satellite data.  More complex non-linear 

methodologies such as those used by CPR attempt to correct 

the satellite data through multiple channels such as clear sky, 

cloudy conditions, and seasonality.  Independent of the tuning 

method used to correct the satellite data, the resulting long 

term dataset must have a representative uncertainty reported.  

Ideally the method(s) used to calculate the uncertainty would 

be a statistically sound methodology that could be used in 

conjunction with any ground-satellite tuning process.   

II. LIMITATIONS OF TRADITIONAL CALCULATIONS 

Traditional calculation methods to determine uncertainty 

have proved to be insufficient in capturing the uncertainty of 

the final long term dataset.  For a ground-satellite correction 

based on least-squares regression, uncertainty is driven by 

residuals and the variability of the input dataset.  While these 

methods typically produce accurate uncertainty results, they 

have been found to be insufficient for solar irradiation 

ground-satellite corrections for a number of reasons: 1) The 

resulting long term average of a ground-satellite correction is 

dependent on the time period that is being used for regression, 

thus simply looking at the residuals from the regression would 

not account for the uncertainty and error that is present from 

correlating higher than average, lower than average, or outlier 

years.  2) All traditional uncertainty methodologies assume 

that the relationship between X and Y is linear.  The fact that 

the long term average is dependent on the time period used 

would imply that while the relationship is almost linear, there 

are nonlinear artifacts that affect the correlation.  3) Solar data 

is variable by nature.  Traditional methods look at standard 

deviation or standard error relative to the mean of the dataset 

to estimate uncertainty, which works well for a manufacturing 

line setting or for calculating measurement uncertainty. 

Applying the same method to estimate uncertainty of solar 

data is not representative as solar irradiation varies constantly 

every day and hour by nature. While ground-satellite 

correlation on sites with higher variability are more uncertain 

due to the nature of correlation, estimating the uncertainty in 

solar data requires a different approach than traditional 

methods. 

For ground-satellite corrections that are not based on least-

squares regression, standard error or fit metrics are often used 

to estimate the uncertainty of the dataset.  This study will 

attempt to quantify the uncertainty associated with those error 

statistics. 

Independent of the tuning method, the nature of the input 

data itself can drive the final result from the tuning process. 

Beyond tuning uncertainty there is also uncertainty present 

due to the amount of input data, time of year of input data, 

and local climate region.  Traditional calculations are not able 

to capture the uncertainty due to the error contributed by 

factors outside of the tuning process (e.g., input data), but the 

inherent ground data errors must be propagated in the final 

uncertainty of the corrected satellite dataset. 



 

III. IMPORTANCE OF INPUT DATA 

The ground data itself could introduce uncertainty to the 

tuning process in three ways: 1) The length of the input data. 

More input data will usually have a lower uncertainty than 

less input data. A larger or longer set of input data will be a 

more representative sample of the population and lower the 

uncertainty. However, Figure 1 shows that this relationship is 

non-linear. 2) The specific time of year that the data covers. 

Different times of the year have different seasonal biases, 

which can either increase or decrease uncertainty. For 

example, data sampled in winter may have a higher 

uncertainty whereas data sampled in summer may have a 

lower uncertainty. 3) The local climate of the site. Different 

sites and climates have differing uncertainties due to the 

length, time of year that the data is sampled, and the 

variability in the climate itself. 

  CPR has developed a method for quantifying these 

uncertainties:  

1.  Data Selection: Minute level Ground Irradiance 

data from the SURFRAD and ISIS stations were 

used for the study. The choice to use these datasets 

was due to the long term nature of the 

measurements (10+ years), the quality of the 

sensors and measurements, and the geographic 

spread of the stations.  

2. Data Quality Control: Minute level ground data 

was converted to hour ending averages and 

compared to hour ending SolarAnywhere data. 

Bad data and night time values were removed. 

3. Varying input data length and time of year: Data 

from 2005 through 2015 was used for all sites. The 

data was broken up into 1-24 month segments 

through the 2005-2015 period. For each site there 

would be 132 one month segments, 131 two month 

segments, 130 three month segments, and so on. 

4. Tuning: CPR’s dual sliding window tuning [3] was 

performed and tuning parameters were determined 

for each month segment, and applied to the full 

11-year time period. The mean bias error (MBE) 

between the ground and the newly tuned 11-year 

data was calculated. This step was repeated for all 

sites and each set of month segments (1-24 

months).  

5. Results: The MBE was calculated for each of the 

resulting tuned datasets and the standard deviation 

of the MBEs were calculated for all of the monthly 

segments and for each site. The resulting standard 

deviations of the MBEs were graphed. 

 

 

The long term data was separated into rolling fixed length 

periods of time to determine the effects of using data from 

different times of year and different years on the tuning 

process. Varying the lengths of the fixed rolling periods 

allows for the impact associated with length of time to also be 

quantified.  

From the resulting MBE distributions, the uncertainty can 

be quantified by looking at the standard deviation.  

Quantifying the uncertainty of the tuning process based on 

varying location, length of ground dataset, and time of year 

allows for the determination of the minimum number of 

months needed to achieve a certain level of uncertainty.  

Based on this it is possible for an uncertainty to be reported 

for a tuning process based on the region and the amount of 

ground data present for tuning. 

Figures 1 and 2 show the results of the CPR tuning based 

methodology using rolling and varying lengths of input data. 

There is a clear trend indicating that more months of ground 

data used for the tuning process, the lower the associated 

standard deviation of the MBEs of the tuned data.  At around 

11 months of ground data the improvement in the standard 

deviation of MBE starts to become asymptotic.  The relative 

decrease in standard deviation per added month of data 

becomes minimal after 12 months of ground data is used for 

tuning. 

 
 

Figure 1: Standard Deviation of Tuned MBEs 

Some sites require less ground data than others to reach a 

low level of uncertainty.  For example, locations such as 

Madison, Bismarck, Desert Rock, Bonville, and Albuquerque 

all have standard deviations of MBE below 2% when using 

only 12 months of ground data for the tuning process. These 

results could be used to determine the ideal amount of ground 

data that needs to be collected based on proximity of the 

project site to the ground stations used in this study, or based 

on matching climate regions. For example, the Madison site 

has a very low standard deviation even at the 9-month 

sample-level. This would suggest that at locations near or 

similar to the Madison site, 9 months of input ground data for 

tuning may have an acceptable level of uncertainty. For a 

broader picture the average standard deviation of the 14 sites 

may be more useful. If 2% standard deviation is the maximum 

acceptable level of uncertainty associated with the tuning 

process, then 12 months of data on average has a standard 
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deviation of 2.02% and 13 months of data on average has a 

standard deviation of 1.98%. These results can be used to 

assign an uncertainty associated with tuning for a given length 

of ground data and sites with similar climate or sites located 

near one of the 14 stations used.  

 
 

Figure 2: Tuning Results for Varying Rolling Periods at the 

SURFRAD station located in Desert Rock 

Figure 2 illustrates the impact of different time periods on 

the tuning process.  The MBE which is on the y-axis changes 

as the time period changes.  Clearly tuning processes are 

sensitive to the time period, even if the length of time is the 

same. A clear seasonal signal is present, especially at the 6-

month level. This is due to the misrepresentative nature of 

only sampling the summer or winter months. A sample with 

an exceptionally sunny or cloudy bias will cause the tuning to 

perform poorly as seen at Desert Rock 8/1/2009 at the 6-

month sample level.  As more data is used, the results have 

reduced variance because the sample becomes more 

representative of the entire dataset, implying a reduction in 

the uncertainty associated with tuning. Desert Rock is an ideal 

location to show limited uncertainty associated with tuning 

due to the relatively low variance in the irradiance at this site.  

Plotting all the MBEs after tuning for all sites provides 

insight on the normality of the tuning process. Figure 3 is a 

histogram of MBEs for all sites using 12-24 month segments. 

 
Figure 3: Histogram of MBEs for all sites 12-24 month segments 

 

Month segments with lengths of 1-11 months were not 

included in this figure because those lengths of time were 

determined to be too sensitive to seasonal biases and only 

enhance the negative skew already present. The negative 

skew is due to the effect cloudy months, or month segments 

that include disproportionate amounts of winter months, have 

on the tuning and in turn the uncertainty. All MBEs for month 

segments 12-24 for all sites are present in Figure 3. This 

shows all the possible resultant MBEs after tuning. The 

MBEs greater than ±3% represent the less than ideal tuning 

scenarios for above average cloudy periods, periods that 

disproportionately sample summer or winter months, sites 

with more variable climates, or a combination of all three. 

However, 90.30% of MBEs fall below ±3% so the uncertainty 

for all sites with 12-24 months of ground data is low. 

IV. BASIS FOR A NEW UNCERTAINTY CALCULATION 

Noting the limitations of traditional uncertainty calculation 

method, and the need to have a representative uncertainty 

reported for each tuned dataset, an iterative Monte Carlo 

based simulation should provide the most representative 

uncertainty.  By performing an adequate number of iterations, 

the results should converge and a distribution should be 

formed by the results.  Assuming the resulting distribution (of 

annual kWh/m
2
 in this case) is normal, relative standard error 

could be used to generate a more representative uncertainty 

value. 

There are many ways that a Monte Carlo simulation could 

be applied to the data.  Based on what is known about ground-

satellite correlations, ideally the amount of data used in each 

iteration and the time period used for each iteration would 

change.  To explore the applicability of a Monte Carlo 

approach, a site was chosen with 30 months of ground data.  

A total of 46,656 iterations were run consisting of a ground-

satellite correction based on every possible combination of 30 

months to form a 12 month period.  The resulting distribution 

as seen in Figure 4 was tri-modal.  A deeper look at the 

results revealed that each of the three distinct peaks in the 

distribution represented each of the three years that the data 

was sampled from.   

 

Figure 4: Histogram Based on 12 Month Combination Method 
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The Monte Carlo simulations for combinations of 12 month 

periods confirm that the result is dependent on the time period 

used.  Also, this method is not adequate to calculate 

uncertainty because of a few reasons, 1) it ignores the impact 

of including more than 12 months of ground data in each 

iteration, 2) longer amounts of ground data will result in 

exponentially larger number of possible combinations and the 

computing limit of standard computers might be reached 

quickly, and 3) the resulting distribution might not be normal 

in some cases, which would make any uncertainty calculation 

difficult.  

V. PROPOSED METHODOLOGY 

The methodology developed to calculate uncertainty for 

ground-satellite correlations combines bootstrapping and a 

Monte Carlo based approach.  Bootstrapping provides the 

ability to run a countless number of iterations with a limited 

amount of data.  Input ground and satellite data can be daily 

sums or hourly data, in either case the same uncertainty 

calculation process can be used.  However, hourly data is 

recommended since more data points are available.  There is 

no requirement on size of the dataset, but according to the 

results shown in Section III at least one full year of ground 

data is highly recommended in most cases. 

EDF Renewable Energy has developed the following 

method for quantifying the uncertainty: 

1. Data pairs were randomly sampled from the 

available dataset.  The amount of data to be 

sampled from each month was randomly varied for 

each iteration between 50% and 100% of all 

available data pairs.  Linear weighting was used to 

heavily weight smaller sample sizes because there 

is no need to run 100% of the samples more than 

once, and less possibilities exist as the sample 

percentage increases. 

2. All of the data pairs for each of the 12 months 

(including all available years of data) were 

aggregated.  The number of data pairs sampled for 

each iteration was based on the sampling 

percentage that was randomly determined for the 

iteration in step 1. 

3. The ground-satellite correction was performed 

based on the randomly sampled data.  In regards to 

this study, the correction was performed based on 

linear regression of the concurrent ground and 

satellite data pairs.  An ordinary least-square 

coefficients were generated for each of the twelve 

months, and also an annual least-square 

coefficients were generated based on all sampled 

data pairs.  Monthly coefficients were used to 

correct the long term satellite data. If the 

coefficient of determination for a given month was 

poor, then the annual coefficient was used for the 

given month. 

4. An annual P50 long term mean (GHI kWh/yr) was 

generated. 

5. The process was repeated at least 50,000 times or 

until convergence occurs. 

6. Output of each iteration is the annual P50 long 

term mean and the random sampling percentage 

which was used for the iteration. 

7. Deviation of each iteration from the annual P50 

long term mean generated using the entire dataset 

was calculated.  A histogram was created with the 

results from all of the iterations. 

8. The relative standard error (RSE) was calculated 

representing the standard uncertainty (U68) 

resulting from the tuning process. 

     
 

 
 

 

Implementation of the described methodology could be 

done using a scripting language, FORTRAN, or Matlab.  EDF 

Renewable Energy has developed a proprietary FORTRAN 

program which performs the Monte Carlo simulation and also 

provides the user with additional inputs and outputs. 

VI. RESULTS AND DISCUSSION 

The proposed uncertainty calculation methodology was 

evaluated with hourly solar irradiance data from EDF 

Renewable Energy owned solar meteorological stations and 

also the SURFRAD meteorological stations. From the 

SURFRAD stations, three years of good quality ground data 

without missing values were chosen for this study. All 

simulations were run for 50,000 times and convergence was 

seen at this number of iterations. 

Summary of the results from the study is shown in Table 1. 

 

 

Station Location 

No. of 

Months of 

Ground 

Data 

Calculated 

RSE 

of the 

Tuning 

Process 

Total 

Uncertainty 

(U68) 

Blythe, CA 40 0.13% 1.45% 

Mojave, CA 33 0.10% 1.45% 

Moore’s Crossing, TX 27 0.28% 1.47% 

Long Island, NY 17 0.60% 1.56% 

Corcoran, CA 24 0.12% 1.45% 

Boulder, CO* 36 0.24% - 

Desert Rock, CA* 36 0.11% - 

Fort Peck, MT* 36 0.22% - 

Goodwin Creek, MS* 36 0.17% - 

 

Table 1: Results of Uncertainty Calculation Using the Proposed Method 

*SURFRAD Meteorological Stations 



 

Figure 5: Histogram Based on the Monte Carlo Uncertainty 

Calculation Method 

 

 

All sites had over a year of data and the results show a very 

low relative standard error and the distributions of the 

deviations from the mean for all sites were normal as shown 

in the sample graph.  The results show that randomly 

choosing data pairs in random quantities for the tuning 

process will still converge to a long term mean, without much 

variance.  

The relative standard error calculated based on the 

proposed uncertainty methodology is only an estimate of 

uncertainty of the tuning process. This uncertainty calculation 

method will be applicable for any tuning process regardless of 

the correction methodology used, such as EDF Renewable 

Energy’s linear regression approach or the method used by 

Clean Power Research. The bootstrapping technique 

facilitates sampling data pairs randomly which are then used 

for each iteration with the chosen tuning method.  

The underlying assumption for this methodology is that the 

ground data is true. However, while for the correction we 

assume that the ground data is accurate, the uncertainty in the 

measurement of the ground data has to be accounted for in the 

final uncertainty calculation. EDF Renewable Energy 

accounts for this uncertainty through various factors such as 

pyronometer accuracy, data logger measurement uncertainty, 

and installation and maintenance uncertainty (e.g. angle of 

pyranometers, cleanliness of pyranometers, etc.). Table 1 

shows the total uncertainty of the tuning process based on 

EDF Renewable Energy’s methodology.  The uncertainty of 

the tuning is combined in quadrature with the uncertainty of 

the ground data to generate the total uncertainty of the long 

term P50 mean.  Since the ground data uncertainty and the 

tuning uncertainty are independent they are combined in 

quadrature and not added. The total uncertainty in Table 1 for 

SURFRAD stations was not calculated because the ground 

data measurement uncertainty is unknown. 

VII. CONCLUSION 

For a solar project, the solar resource data is one of the 

largest and most important drivers to production estimates 

and the overall project economics.  The reported uncertainty 

associated with the solar resource data is as important.  Data 

without accurate uncertainty estimation limits the validity and 

confidence associated with the dataset.  Thus, understanding 

the uncertainty of all input datasets is paramount to having an 

accurate production estimate. 

The annual uncertainty of raw satellite data is typically 

reported as 5% (U95). With ground measurements there is an 

opportunity to remove the bias present in the satellite data and 

reduce the uncertainty even further. The importance of input 

data for ground satellite tuning is very apparent. As shown, at 

least 12 months of ground data will result in an acceptable 

level of uncertainty. By using more input data it was shown 

that the MBE was reduced, although the incremental benefit 

of having over 12 months of data becomes asymptotic. In 

general, for cloudier locations or locations with greater 

climate variability a larger input dataset is helpful to drive the 

uncertainty down further.  Datasets of at least 12 months are 

necessitated due to the monthly and seasonal variation in the 

relationship between ground and satellite data. 

Standard statistical metrics that are calculated relative to the 

mean of the dataset are not adequate enough in capturing the 

uncertainty of solar irradiance data because of the varying 

nature of the data. Therefore, a Monte-Carlo based method is 

proposed in this paper to randomly sample subsets of data 

from the available ground meteorological dataset to perform 

multiple iterations of the tuning process in order to calculate 

the uncertainty associated with the tuning process. This 

method estimates uncertainty of the ground-satellite data 

tuning regardless of the methodology used. The total 

uncertainty of the final long term corrected dataset must also 

include the uncertainty associated with the ground data.  With 

the combined uncertainty of both the tuning process and 

uncertainty of the ground data, the combined U68 uncertainty 

is almost 50% lower than that of the raw satellite data.  

Besides having a lower uncertainty, any bias that exists 

between the satellite and ground data is removed.   
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