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PREFACE 

The California Energy Commission Energy Research and Development Division supports 

public interest energy research and development that will help improve the quality of life in 

California by bringing environmentally safe, affordable, and reliable energy services and 

products to the marketplace. 

The Energy Research and Development Division conducts public interest research, 

development, and demonstration (RD&D) projects to benefit California. 

The Energy Research and Development Division strives to conduct the most promising public 

interest energy research by partnering with RD&D entities, including individuals, businesses, 

utilities, and public or private research institutions. 

Energy Research and Development Division funding efforts are focused on the following 

RD&D program areas: 

 Buildings End-Use Energy Efficiency 

 Energy Innovations Small Grants 

 Energy-Related Environmental Research 

 Energy Systems Integration 

 Environmentally Preferred Advanced Generation 

 Industrial/Agricultural/Water End-Use Energy Efficiency 

 Renewable Energy Technologies 

 Transportation 

 

This is the final report for the Demonstration and Validation of PV Output Variability Modeling 

Approach project (contract number CEC-500-10-059) conducted by Clean Power Research®. The 

information from this project contributes to Energy Research and Development Division’s 

Renewable Energy Technologies Program. 

 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 
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ABSTRACT 

The California Energy Commission’s (CEC) Public Interest Energy Research (PIER) program 

awarded Clean Power Research a contract to evaluate satellite-derived irradiance and simulated 

PV fleet performance accuracy for PV resource management in the CAISO control area. The 

goals of the Agreement are to validate existing research and tools, and to integrate the results 

into the CAISO’s planning process.  

Under this research, Clean Power Research® (CPR) has collected a database that includes all of 

the solar PV systems installed in California and developed a unique method to predict PV fleet 

power production. SolarAnywhere® FleetView™ uses inputs of satellite-derived solar resource 

data and the design attributes and locations of PV systems to predict PV fleet power 

production. 

The database includes locations of all PV systems in California. PV fleet power production was 

simulated using FleetView. Measured PV power production was provided by the CAISO. The 

measured data was used to identify performance issues and to compare with simulated results. 

The PV fleet power production variability modeling results suggest that 3 percent Relative 

Mean Absolute Error (rMAE) can be achieved for PV fleet simulation for 15-minute time 

interval data over a six-week period given that accurate location-specific solar resource data is 

supplied; correct PV specifications are used; the PV simulation model is properly tuned; and PV 

plant operating status is reflected in the simulation to account for poor performance. Results 

also suggest that total error was over 7 percent if the model was not tuned and PV plant 

operating status was not reflected in the simulation. 

 

Keywords: California Energy Commission, California Independent System Operator, Clean 

Power Research, SolarAnywhere, FleetView, PV production, PV production, PV variability, 

renewable energy 

 

 

 

 

Please use the following citation for this report: 

Hoff, Thomas, Benjamin L. Norris, Phil Gruenhagen. (Clean Power Research). 2013. 

Demonstration and Validation of Output Variability Modeling Approac. California 

Energy Commission. Publication number: CEC-500-2010-059. 



iv 

TABLE OF CONTENTS  

Acknowledgements ................................................................................................................................... i 

PREFACE ................................................................................................................................................... ii 

ABSTRACT .............................................................................................................................................. iii 

TABLE OF CONTENTS ......................................................................................................................... iv 

LIST OF FIGURE ................................................................................................................................... vii 

LIST OF TABLES .................................................................................................................................. viii 

EXECUTIVE SUMMARY ........................................................................................................................ 1 

CHAPTER 1: California PV System Database ..................................................................................... 3 

1.1 Existing System Data in Database ........................................................................................... 3 

1.2 Categories of Systems ................................................................................................................ 4 

1.3 Data Collection Plan .................................................................................................................. 5 

1.4 All California PV Database ....................................................................................................... 5 

1.5 Metered PV Fleet ........................................................................................................................ 7 

1.6 CAISO Control Area Groupings .............................................................................................. 8 

Chapter 2: High Resolution Solar Resource Data ............................................................................. 11 

2.1 Definitions ................................................................................................................................. 11 

2.1.1 Data Source ....................................................................................................................... 11 

2.1.2 Time Attributes ................................................................................................................. 11 

2.1.3 Evaluation Metric ............................................................................................................. 11 

2.2 Approach ................................................................................................................................... 13 

2.3 Location Selection .................................................................................................................... 13 

2.3.1 Locations Selected for Validation .................................................................................. 13 

2.3.2 Obtain Time Series Data .................................................................................................. 14 

2.3.3 Evaluate All Observations for Data Quality ................................................................ 16 

2.4 Results ........................................................................................................................................ 18 

2.4.1 Each Individual Location ................................................................................................ 18 

2.4.2 Average of Individual Locations ................................................................................... 19 



v 

2.4.3 Fleet of Locations.............................................................................................................. 21 

2.5 Summary ................................................................................................................................... 27 

Chapter 3: PV Fleet Simulation ............................................................................................................ 29 

3.1 Introduction .............................................................................................................................. 29 

3.2 Forecast Requirements ............................................................................................................ 29 

3.3 PV Fleet Simulation Method ................................................................................................... 31 

3.3.1 Solar Resource Data ......................................................................................................... 31 

3.3.2 PV Plant Specification Data ............................................................................................ 31 

3.3.3 PV Fleet Simulation Model ............................................................................................. 32 

3.3.4 Rapid Calculations ........................................................................................................... 32 

3.4 Time Series Data ....................................................................................................................... 32 

3.5 Summary ................................................................................................................................... 34 

Chapter 4: PV Fleet Simulation Validation ........................................................................................ 35 

4.1 Introduction .............................................................................................................................. 35 

4.2 Approach ................................................................................................................................... 35 

4.3 Results ........................................................................................................................................ 35 

4.3.1 Sources of Error ................................................................................................................ 35 

4.3.2 PV Plant Performance Issues .......................................................................................... 36 

4.3.3 PV Fleet Simulations ........................................................................................................ 40 

4.3.4 Relative Mean Absolute Error ........................................................................................ 42 

4.3.5 Sample Days After Tuning and Filtering ...................................................................... 45 

Chapter 5: Conclusions and Future Research .................................................................................... 49 

5.1 Conclusions ............................................................................................................................... 49 

5.2 Future Research ........................................................................................................................ 49 

References Appendix A: ...................................................................................................................... A-1 

Reporting of Relative Irradiance Prediction Dispersion Error..................................................... A-1 

Introduction ........................................................................................................................................ A-1 

Absolute errors ................................................................................................................................... A-2 



vi 

Root Mean Square Error (RMSE) ................................................................................................. A-2 

Mean Absolute Error (MAE) ........................................................................................................ A-2 

Relative (Percent) Errors ................................................................................................................... A-2 

Average............................................................................................................................................ A-2 

Weighted Average ......................................................................................................................... A-3 

Capacity ........................................................................................................................................... A-3 

Percent Error Calculation Methods ............................................................................................. A-3 

24 Hours vs. Daytime .................................................................................................................... A-5 

Application Example ..................................................................................................................... A-6 

Threshold Dependence ................................................................................................................. A-8 

RMSE vs. MAE ................................................................................................................................. A-10 

Discussion ......................................................................................................................................... B-10 

Appendix B: ............................................................................................................................................ B-1 

Percent Error Calculations ................................................................................................................... B-1 

RMSE/Avg. .......................................................................................................................................... B-1 

RMSE/Weighted Avg. ....................................................................................................................... B-1 

RMSE/Capacity ................................................................................................................................... B-1 

MAE/Avg. ........................................................................................................................................... B-1 

MAE/Weighted Avg. ......................................................................................................................... B-2 

MAE/Capacity .................................................................................................................................... B-2 

Appendix C: ........................................................................................................................................... C-1 

Half-hour Irradiance Data for Six CAISO Locations ..................................................................... C-1 

 

  



vii 

LIST OF FIGURE 

Figure 1. Fleet simulation procedure. .................................................................................................... 3 

Figure 2: PV Plant Capacity and Cumulative Fleet Capacity vs. Number Metered Plants (MW-

AC) ............................................................................................................................................................... 7 

Figure 3: PV System Mapping Process .................................................................................................. 9 

Figure 4: California PV Capacity .......................................................................................................... 10 

Figure 5: Mean Absolute Error Relative to Available Energy Calculation Example .................. 12 

Figure 6: SolarAnywhere Standard and Enhanced Resolution ...................................................... 14 

Figure 7: Time Series Data for All Data Sources on July 4, 2011 at CAISO Site A ..................... 16 

Figure 8: Half-Hour Energy Production in 2011 from Meter 2 vs. Meter 1 (Site A) .................... 17 

Figure 9: Example of When Only One of the Ground Sensors Has Invalid Data ...................... 17 

Figure 10: Example of When Both Ground Sensors Have Invalid Data ....................................... 18 

Figure 11: Site F Has a Night-Time Calibration Error across the Year .......................................... 18 

Figure 12:  Relative MAE for Each Location Individually ............................................................... 19 

Figure 13: Average MAE of 4 Individual Locations ......................................................................... 21 

Figure 14: MAE of 4 Locations Combined .......................................................................................... 25 

Figure 15: Worst Day, Worst Site Analysis. ....................................................................................... 27 

Figure 16: Sample RTPD PV Fleet Forecast File ................................................................................ 34 

Figure 17: Example of PV Plant that Operated as Expected ............................................................ 38 

Figure 18: Example of PV Plant with Possible Performance Issues .............................................. 39 

Figure 19: Summary of Performance Issues for All Metered Plants ............................................. 39 

Figure 20: PV Fleet Production before PV Performance Filtering ................................................. 40 

Figure 21: PV Fleet Production after PV Performance Filtering .................................................... 40 

Figure 22: Simulated vs. Measured Average 15-Minute Power for CAISO Metered PV Fleet 41 

Figure 23: Power-Based Simulation Tuning ...................................................................................... 42 

Figure 24: Total rMAE ............................................................................................................................ 43 

Figure 25: Daily Relative MAE Using 15-Minute Time Interval before Tuning ........................ 45 

Figure 26: Daily Relative MAE Using 15-Minute Time Interval after Tuning ............................ 45 



viii 

Figure 27: PV Fleet Production on Clear Day .................................................................................... 46 

Figure 28: PV Fleet Production on Day with Production Issues .................................................... 47 

Figure 29: PV Fleet Production on Variable Weather Day with Production Issues ................... 48 

Figure 30: Irradiance Data for Hanford, CA, 2010 ........................................................................... A-7 

Figure 31: Comparison of Error Results for Six Methods Using “All Hours” and “Daytime 

Hours” for Hanford, CA, 2010 ............................................................................................................ A-7 

Figure 32: Energy Distribution of Irradiance Data for Hanford, CA, 2010 ................................ A-8 

Figure 33: Comparison of Error Results for Hanford, CA, 2010 ................................................... A-9 

 

LIST OF TABLES 

Table 1: Existing PV Systems in PowerClerk ...................................................................................... 4 

Table 2: Summary of the All-California PV Database at Start of Project ...................................... 5 

Table 3: Publicly-Owned Utility Capacity (POU SB-1) ..................................................................... 6 

Table 4: List of Metered PV Plants ........................................................................................................ 8 

Table 5: CAISO Regions .......................................................................................................................... 9 

Table 6: Near-Term CAISO Requirements ........................................................................................ 30 

Table 7: Long-Term CAISO Requirements ........................................................................................ 31 

Table 8: Possible Percent Error Calculation Methods .................................................................... A-4 

Table 9: Mathematical Definitions of Percent Error Methods ..................................................... A-5 

Table 10: Ratio of Percent Error Using All Hours to Percent Error Using Daytime Hours ..... A-6 

Table 11: Subjective Evaluation of Relative Error Reporting Method. .................................... A-11 

 

 



1 

EXECUTIVE SUMMARY 

Photovoltaic (PV) plant production variability is a critical challenge to increased PV penetration 

into California’s electricity system. A number of studies have examined the issue of PV output 

variability (see [1] through [12]). A consistent finding of these studies is that variability is 

reduced when PV systems are geographically dispersed. That is, variability is reduced as the 

number of systems increases across a sufficiently large geographic region. 

The California Energy Commission’s (CEC) Public Interest Energy Research (PIER) program 

awarded Clean Power Research® (CPR) a contract to evaluate satellite-derived irradiance and 

simulated PV fleet performance accuracy for PV resource management in the CAISO control 

area. The goals of this research are to validate existing research and tools, and to integrate the 

results into the CAISO’s planning process. The accuracy of the method needs to be 

demonstrated for PV sources within the CAISO control area, and data needs to be delivered in a 

manner compatible with the existing energy and reserve market mechanisms. 

Under this research, CPR has collected and delivered to CEC a database that includes all of the 

solar PV systems installed in California and developed a unique method to predict PV fleet 

power production variability. The method uses inputs of satellite-derived solar resource data 

and the design attributes and locations of PV systems. It combines these inputs with advanced 

algorithms to track cloud patterns to predict output. 

The database includes locations of all PV systems in California. PV fleet power production was 

simulated using FleetView. Measured PV power production was provided by the CAISO. The 

measured data was used to identify performance issues and to compare with simulated results. 

The PV fleet power production variability modeling results suggest that 3 percent Relative 

Mean Absolute Error (rMAE) can be achieved for PV fleet simulation for 15-minute time 

interval data over a six-week period given that accurate location-specific solar resource data is 

supplied; correct PV specifications are used; the PV simulation model is properly tuned; and PV 

plant operating status is reflected in the simulation to account for poor performance. Results 

also suggest that total error was over 7 percent if the model was not tuned and PV plant 

operating status was not reflected in the simulation. 

The California Independent System Operator (CAISO) sees potential of using this approach in 

planning for system operations under alternative renewable energy scenarios. It also sees 

potential for using the approach for forecasting PV fleet production. Additional validation, 

however, is required before the method is usable by the CAISO to inform planning for future 

operational needs. 

 



 

 

.
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CHAPTER 1:  
California PV System Database 

PV fleet power prediction requires technical specifications for each PV system (see Figure 1). 

Thus, the first objective of this project is to develop a database of the PV systems in California. 

 

Figure 1. Fleet simulation procedure. 

 

 

Many of the PV systems for California are included in CPR’s PowerClerk® database. Some 

systems, such as the large PPA projects and systems installed by utilities without PowerClerk, 

are not included. The PowerClerk data set must therefore be supplemented by other data 

sources to provide the basis for fleet simulation. This section summarizes the PV hardware 

database that describes the grid-connected PV fleet in California. 

1.1 Existing System Data in Database 

The first step was to document and characterize the set of existing PV system data already in 

the PowerClerk database. This was accomplished by analyzing the PowerClerk set of programs.  

Table 1 summarizes the results at the beginning of this project (2010). It illustrates that the CSI 

programs at the California IOUs are well-covered, as are LADWP, SMUD, and the City of Palo 

Alto (CPAU) and a portion of Anaheim Public Utilities (APU). 
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Table 1: Existing PV Systems in PowerClerk 

 

 

1.2 Categories of Systems 

The second step was to characterize the “missing” systems that would be the focus of the data 

collection effort. The main categories include: 

 Renewable Portfolio Standard systems (RPS). 

 Publicly owned utility Senate Bill-1 programs (POU SB-1). 

 CEC’s Emerging Renewables Program (ERP). 

 New Solar Homes Partnership (NSHP). 

 Single Family Affordable Solar Homes (SASH). 

 Self-Generation Incentive Program (SGIP). 

 

Program ID Agency Program State Obsolete

Number of 

Completed 

Applications

25 APU Solar Electric Program CA FALSE 239

20 BWP Burbank Water and Power Solar Support Program CA FALSE 72

11 CCSE Small Commercial (< 10 kW) and All Residential CA FALSE 7,128

12 CCSE Large Commercial (>= 10 kW) CA FALSE 86

28 CCSE Multifamily Affordable Solar Housing CA FALSE 28

33 CPAU PV Partners CA FALSE 14

50 LADWP Solar Incentive Program CA FALSE 14

51 LADWP Solar Incentive Program - Legacy CA FALSE 4,088

7 PG&E Small Commercial (< 10 kW) and All Residential CA FALSE 30,668

8 PG&E Large Commercial (>= 10 kW) CA FALSE 537

26 PG&E Multifamily Affordable Solar Housing CA FALSE 57

9 SCE Small Commercial (< 10 kW) and All Residential CA FALSE 15,601

10 SCE Large Commercial (>= 10 kW) CA FALSE 249

27 SCE Multifamily Affordable Solar Housing CA FALSE 29

4 SMUD Residential Retrofit PV Program CA FALSE 1,099

18 SMUD Commercial PV Program CA FALSE 69

19 SMUD Commercial New Construction PV Program (Obsolete) CA TRUE

34 SMUD SMUD PV-Commercial CA FALSE 3

35 SMUD SMUD Contracted-Residential Retrofit CA FALSE 343

36 SMUD SMUD Contracted-Commercial CA FALSE 32

37 SMUD Conversions-From SMUD to Customer Owned CA FALSE 81

38 SMUD Community Solar CA FALSE 16

39 SMUD SolarSmart CA FALSE 0

40 SMUD SMUD Financed Church Program CA FALSE 15

41 SMUD SMUD Contracted-Residential New Construction CA FALSE 110

42 SMUD Residential PV-New Construction (pre SolarSmart) CA FALSE 139

43 SMUD Commercial Self Install-No Rebate CA FALSE 11

44 SMUD Residential Self Install-No Rebate CA FALSE 44

45 SMUD SMUD PV-Utility CA FALSE 24

60,796
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1.3 Data Collection Plan 

The following describes the plan to collect, qualify and enter the data necessary to supplement 

the existing database. Sunterra Solar Inc., of Novato, California was selected as the contractor to 

research these systems and contact utilities as necessary to obtain system location, hardware 

and orientation details required for modeling.  

The subcontractor performed the following services: 

 Review the materials provided by CPR: 

o Sample Data Format. 

o List of Major Solar Projects. 

o List of California LSEs. 

o PV System Specification Sources. 

 Contact utilities, project owners, and others by email and telephone to obtain PV system 

specifications. 

 Enter data into a CPR-provided web-based database interface. 

 Attend up to 3 face-to-face meetings in CPR’s Napa office. 

1.4 All California PV Database 

Table 2 summarizes the data that was collected as of March 2012, now constituting the “All 

California PV Database.” 78,025 of these systems (773 MW) existed in PowerClerk, primarily 

from the CSI program. RPS systems are large, multi-MW systems used by the IOUs (or owned 

by the IOUs) to meet state RPS obligations. This includes the 290 MW Agua Caliente project. 

 

Table 2: Summary of the All-California PV Database at Start of Project 

 No. Systems Capacity (MW) 

PowerClerk (existing) 78,025* 773 

RPS 37 644 

POU (SB-1) 45 50 

CEC ERP (Before 2005) 11,455 45 

CEC ERP (2005 and later) 16,602 78 

New Solar Homes Partnership (NSHP) 12,543 40 

Single Family Affordable Solar Homes (SASH) 1,949 7 

Self-Generation Incentive Program (SGIP) 917 144 

Total 121,573 1,781 

 

Data from publicly-owned utilities (POUs) was obtained from the SB-1 reporting requirements. 

ERP, NSHP, SASH, and SGIP represent various incentive programs available to California 

consumers over several years. System-level data from each of these programs was obtained and 

included in the database. 
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Table 3 summarizes the data collected for the publicly owned utilities (POUs) based on required 

reporting under SB-1. The fleets were analyzed to prevent duplication in cases where the utility 

had systems described in PowerClerk. 

 

Table 3: Publicly-Owned Utility Capacity (POU SB-1) 

POU Capacity (MW) 

Alameda Municipal Power 0.60 

Anaheim Public Utilities 1.97 

Azusa Light & Water 0.15 

Banning Public Utilities 0.73 

Biggs Municipal Utilities 0.01 

Burbank Water & Power 2.01 

Colton Electric Utility 1.03 

Glendale Water & Power 1.32 

Gridley, City of 0.01 

Healdsburg, City of 0.27 

Hercules Municipal Utility 0.02 

Imperial Irrigation District 4.06 

Lassen Municipal Utility District 0.10 

Lodi Electric Utility 1.20 

Lompoc, City of 0.44 

Merced Irrigation District 0.04 

Modesto Irrigation District 9.01 

Moreno Valley Electrical Utility 0.08 

Needles, City of 0.07 

Palo Alto, City of 2.73 

Pasadena, Water & Power Department 3.22 

Pittsburg Power Company 0.09 

Plumas-Sierra Rural Electric Cooperative 0.19 

Rancho Cucamonga Municipal Utility 0.06 

Redding Electric Utility 0.63 

Riverside Public Utilities 3.26 

Roseville Electric 2.11 

Santa Clara, City of 0.03 

Shasta Lake, City of 0.05 

Silicon Valley Power 4.94 

Trinity Public Utility District 0.07 

Truckee Donner Public Utilities District 0.27 

Turlock Irrigation District 6.39 

Ukiah, City of 0.08 
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1.5 Metered PV Fleet 

Renewable Portfolio Standard (RPS) systems include large systems that utilities built or 

contracted to satisfy obligations. These systems are directly metered by the CAISO. These 

systems are also referred to as the metered systems, or the CAISO metered fleet. 

The CAISO metered fleet consists of 46 PV plants. Forty-four of the plants are located in 

California. Two of the plants are located in Arizona and tie electrically to the CAISO’s control 

area. Figure 2 summarizes the PV plant capacity (MW-AC) of the metered systems. Table 4  

provides a list of the plants. The blue bars correspond to the ratings of each individual plant. 

The plants are ordered according to decreasing capacity. The red line presents cumulative PV 

plant capacity vs. the number of plants. 

 

Figure 2: PV Plant Capacity and Cumulative Fleet Capacity vs. Number Metered Plants (MW-AC) 
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Table 4: List of Metered PV Plants 

Plant Number Capacity (MW-AC)  Plant Number Capacity (MW-AC) 

1 269.7  24 3.2 

2 202.6  25 3.0 

3 94.9  26 2.9 

4 94.5  27 2.9 

5 44.8  28 2.7 

6 22.1  29 2.3 

7 20.8  30 2.3 

8 20.5  31 2.1 

9 19.9  32 2.0 

10 19.9  33 2.0 

11 18.9  34 2.0 

12 14.5  35 2.0 

13 13.5  36 1.8 

14 10.8  37 1.5 

15 9.0  38 1.5 

16 7.7  39 1.4 

17 5.9  40 1.4 

18 4.9  41 1.3 

19 4.8  42 1.1 

20 4.8  43 1.1 

21 4.7  44 0.9 

22 3.9  45 0.7 

23 3.6  46 0.5 

 

1.6 CAISO Control Area Groupings 

CPR determined during the course of the project that it was insufficient to provide a single PV 

fleet prediction for the entire state of California. Rather, the CAISO required that PV fleet power 

predictions be grouped in specific ways. The CAISO specified that the data be grouped into five 

regions, as defined in Table 5. 

In addition, the CAISO specified that PV systems need to be categorized as either metered 

systems or behind-the-meter systems for each region. Thus, ten PV fleet power predictions need 

to be provided to the CAISO. 
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Table 5: CAISO Regions 

 Metered Behind-the-Meter 

PG&E Bay Area   

PG&E Non-Bay Area   

SCE Coastal   

SCE Inland   

SDG&E   

 

After all of PV specifications were collected, each PV system was matched to one of the ten 

groups. 

Figure 3 illustrates the mapping process for one PV system. Detailed PV specification data for a 

single system was mapped to the city of San Francisco. This, in turn, was mapped to the PG&E 

Bay Area CAISO region. Finally, it was a behind-the-meter PV system so it was mapped to the 

“PG&E Bay Area Behind-the-Meter” group. 

This process was repeated for all metered and behind-the-meter PV systems. The resulting 

capacity as of January 1, 2013 for the state of California is presented in Figure 4. In addition, the 

PV systems that supplied power to other control areas were mapped to their respective control 

areas.  

 

Figure 3: PV System Mapping Process 
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Figure 4: California PV Capacity 
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Chapter 2:  
High Resolution Solar Resource Data  

PV fleet power prediction requires solar resource data that corresponds to the location of each 

PV system (see Figure 1). The second task of this project was to assess high resolution solar data 

accuracy for a defined fleet of PV systems. 

2.1 Definitions 

It is important to clearly define what is meant by accuracy before discussing solar resource data 

accuracy. Accuracy validation often means different things to different people. As such, it is 

useful to begin with a definition of how accuracy quantification can be performed. 

Three fundamental questions need to be answered to provide a clear definition of how accuracy 

quantification is performed. 

1. What is the data source? 

2. What are the time attributes? 

3. What is the evaluation metric? 

2.1.1 Data Source 

The first step is to identify the data that is being evaluated. Options include irradiance data or 

simulated PV power production using irradiance data and other parameters. In addition, the 

analysis can be performed for individual locations or fleets (i.e., multiple locations). This 

chapter focuses on irradiance data. The analysis is performed for both individual locations and 

fleets. A subsequent chapter assesses accuracy for PV fleet production data. 

2.1.2 Time Attributes 

The second step is to specify the required time attributes. These include: 

 Time period: total amount of data included in the analysis. This can range from a few 

minutes to many years. This chapter focuses on one year worth of data. 

 Time interval: how the data in the time period is binned. This can range from a few 

seconds to annually. For example, if the time period is one year and the time interval is 

one hour, the time period would be binned into 8,760 time increments. This chapter 

examines one-minute to one-year time intervals. 

 Time perspective: when the predicted observation is reported. This can range from 

historical (backward looking) to forecasted a few hours ahead to forecasted multiple 

days ahead (forward looking). This chapter focuses on historical data. 

2.1.3 Evaluation Metric 

The third step is to select the evaluation metric. Error quantification metrics used in assessing 

absolute irradiance model accuracy such as Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) have been precisely defined  [17], [18]. Their relative counterpart (results 

expressed in percent), however, can be subject to interpretation and may cover a wide range of 

values for a given set of data depending on reporting practice.  
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Appendix A suggests that the MAE relative to available energy (rMAE) is a good method to 

measure relative dispersion error. This is the method used in the present analysis. The MAE 

relative to the average energy available is calculated by summing the absolute error for each 

time interval over the time period, and then dividing by the total available energy. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑒𝑎𝑛 𝐴𝑏𝑜𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ |𝐼𝑡

𝑡𝑒𝑠𝑡 − 𝐼𝑡
𝑟𝑒𝑓

|𝑁
𝑡=1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

 ( 1 ) 

 

where 𝐼𝑡
𝑡𝑒𝑠𝑡 is the test irradiance at time t, 𝐼𝑡

𝑟𝑒𝑓
 is the reference irradiance at time t, and N is the 

number of time intervals. 

It is useful to provide a hypothetical example of how to calculate the rMAE. A short time period 

(one day) is selected in order to graphically illustrate the calculations; the actual calculations in 

this paper use a one year time period.  

As presented in Figure 5, the process is follows: 

 Select time period: 1 day. 

 Select time interval: 1 hour. 

 Calculate absolute error for each hour and sum the result as described in the top part of 

Equation ( 1 ): 1.6 kWh/m2/day. 

 Calculate available energy for each hour from reference data and sum the result as 

described in the bottom part of Equation ( 1 ): 4.5 kWh/m2/day. 

 Calculate Relative Mean Absolute Error: 36% (i.e., 1.6/4.5). 

 

Figure 5: Mean Absolute Error Relative to Available Energy Calculation Example 

 

 

It is important to note that a more often reported measurement of error is MAE relative to 

generating capacity. In the above example, however, it is unclear over what time period the 
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generating capacity should be selected. Should it be capacity during daylight hours or capacity 

over the entire day, including night time hours? MAE relative to daytime capacity is about 

13.3% (i.e., 1.6/12) while Mean Absolute Error relative to full day capacity is about 6.6% (i.e., 

1.6/24). 

It is due to this sort of ambiguity, as well as the fact that MAE relative to energy is a much more 

stringent metric (e.g., in this example, MAE relative to energy is 6 times higher than MAE 

relative to daily generation capacity), that the MAE relative to energy (rMAE) is selected as the 

evaluation metric. 

2.2 Approach 

This metric can be used to quantify irradiance data accuracy for a one-year time period (2011) 

with time intervals ranging from one-minute to one-year using a historical time perspective. 

The analysis was performed for both individual locations and the ensemble of those locations. 

2.3 Location Selection 

2.3.1 Locations Selected for Validation 

Ten of the 46 metered locations were randomly selected for validation purposes. In order to 

perform the detailed analysis, each location had to have two global horizontal insolation (GHI) 

monitoring devices available on site and have one year’s (2011) worth of data available. There 

were six locations that passed this initial screening. 

A total of six test locations were analyzed where PV systems are located within the CAISO 

control area. The locations are identified as locations A through F. Each location is equipped 

with two redundant global horizontal irradiance (GHI) sensors. One of the sensors was used as 

a reference and compared to four test configurations: the second ground sensor, and three 

satellite-derived sources (SolarAnywhere Standard, Enhanced, and High Resolution data sets). 

The validation approach involved the following steps: 

 Obtain time-series GHI data for 2011 for six locations: 

o 4-second data averaged into 1-minute time intervals from two separate sensors at 

each location (sources: CAISO [20]) 

o Satellite based data at the following resolutions (source: SolarAnywhere [14]) 

 1 minute, 1 km grid (High Resolution) 

 ½ hour, 1 km grid (Enhanced Resolution) 

 1 hour, 10 km grid (Standard Resolution) 

 Time-synchronize data sets by converting ground sensor data from Pacific Daylight 

Time to Pacific Standard Time. 

 Evaluate all observations for data quality; exclude data where any one of the data 

sources has data quality issues. 

 Calculate rMAE using the ground sensor that minimizes SolarAnywhere error as a 

reference. 

 Calculate rMAE using the other ground sensor as a reference. 

 Repeat the analysis for fleets of locations. 
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2.3.2 Obtain Time Series Data 

CPR extended SolarAnywhere Standard Resolution (10 km spatial/1 hour temporal resolution) 

to SolarAnywhere Enhanced Resolution (1 km spatial/ 30 minute temporal resolution) under a 

previous contract.1 Figure 6 illustrates the increase in resolution for San Francisco, CA. 

 

Figure 6: SolarAnywhere Standard and Enhanced Resolution  

 

(San Francisco, CA) 

 

A critical part of this CEC project was to extend SolarAnywhere Enhanced Resolution to 

SolarAnywhere High Resolution (1 km spatial/ 1 minute temporal resolution). The data was 

generated for all selected locations. Figure 7 presents a sample of the data for one day (July 4, 

2011) at one location (CAISO Site A). 

 

  

                                                      
1 California Solar Initiative Solicitation #1 Grant Agreement, “Advanced Modeling and Verification for 

High Penetration PV”. 
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Figure 7: Time Series Data for All Data Sources on July 4, 2011 at CAISO Site A 

 

 

2.3.3 Evaluate All Observations for Data Quality 

As mentioned above, one of the steps in the analysis was to evaluate all observations for data 

quality. When evaluating accuracy, it is often simply assumed that reference data is correct. 

This assumption is made due to the difficulty in determining whether or not the reference data 

is correct: to what can the reference data be compared? 

A unique aspect of the data provided by the CAISO is that all the locations have two ground 

sensors. As a result, since either sensor could be the reference, the data quality of the ground 

sensors was assessed by comparing the two ground data sets.  

This was the process used to assess data quality: 

(1) Compare the two sets of ground sensor data to each other to determine when one value 

is substantially different than the other value. 

(2) Compare the enhanced resolution satellite and ground sensor data to search for 0 values 

occurring at incorrect times (e.g., mid-day on otherwise clear day) to determine when 

the satellite data is invalid. 

(3) Compare ground sensor data to the SolarAnywhere Enhanced Res. data to determine if 

both ground observations are the same but are obviously incorrect (e.g., the irradiance 

value remains at a constant level for many hours).  

The complete data set was evaluated and then potential outliers were manually evaluated and 

screened for each of these steps. Figure 8 illustrates the screening result when comparing the 

two ground sensors at one location. All of the data points would lie on the 45 degree red line if 

they were identical. The blue symbols correspond to valid data and the black symbols 

correspond to invalid data. Figure 9 illustrates the issue for one of the invalid observations 

when one of the sensor’s recorded values remained constant after solar noon. Figure 10 



 

16 

illustrates the case when both ground sensors produced a similar value but were obviously 

incorrect, reading a constant low value on an otherwise clear day as assessed from the satellite 

data. Figure 11 illustrates the case when there was a night-time calibration error across the year. 

Site E was missing more than a month of data during the first part of the year as well as a five 

percent difference between the two ground sensors.  

Sites E and F were eliminated from the analysis as a result of the data filtering process. The 

remaining sites had about one percent of the ground data marked as invalid. 

 

Figure 8: Half-Hour Energy Production in 2011 from Meter 2 vs. Meter 1 (Site A) 

 

 

Figure 9: Example of When Only One of the Ground Sensors Has Invalid Data  

 

             (Site A, June 22, 2011) 
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Figure 10: Example of When Both Ground Sensors Have Invalid Data  

 

         (Site C, May 1-2, 2011) 

Figure 11: Site F Has a Night-Time Calibration Error across the Year 

 

 

2.4 Results 

rMAE was calculated for three scenarios: 

 Each location individually. 

 Average of individual locations. 

 Fleet of locations. 

2.4.1 Each Individual Location 

Figure 12 presents the rMAE for each of the four locations using time intervals ranging from 1 

minute to 1 year. 
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Figure 12:  Relative MAE for Each Location Individually 

 

 

2.4.2 Average of Individual Locations 

Figure 13 presents the average rMAE of four individual locations. The black line summarizes 

the error when two ground stations were used (one was the reference and the other was the 

test). The green, blue, and red regions summarize the error when SolarAnywhere High, 

Standard, and Enhanced Resolution were compared to the ground sensor. The green, blue, and 

red areas are regions rather than lines because they compare satellite data to ground data using 

the two different ground sensors: the top of the region is the comparison using the ground 

sensor that maximizes error; the bottom of the region is the comparison using the ground sensor 

that minimizes error. 

There are several important things to notice in the figure. First, as expected, error decreases for 

all data sources as the time interval increases. Second, accuracy improves for each of the three 

satellite models as the spatial and temporal resolutions are increased. Third, error exists even 

between two ground sensors that are in almost the same location (i.e., ground sensors have 1 

percent annual error). Fourth, SolarAnywhere High Resolution has only 10 percent error over a 

one minute time interval, 7 percent error over a one hour time interval, and 2 to 3 percent error 

on a one year time interval. 
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Figure 13: Average MAE of 4 Individual Locations 

 

 

2.4.3 Fleet of Locations 

As illustrated by the list of References, a number of studies have examined the issue of PV 

output variability. A consistent finding of these studies is that variability is reduced when PV 

systems are geographically dispersed. That is, variability is reduced as the number of systems 

increases across a sufficiently large geographic region. 

So far, this report has focused on the error associated with individual locations. While 

individual locations are of interest in some cases, there are certainly many other cases in the 

utility industry when users are most interested in the error associated with a set of locations. 

The rMAE analysis was repeated with the input data being the combined irradiance across four 

locations. The results are presented in Figure 14. A clear reduction in error due to combining 

locations can be seen by comparing Figure 14 to Figure 13. That is, the effect of geographic 

dispersion on reducing output variability reduction that has been observed by others is now 

also observed with regard to prediction accuracy: accuracy improves as a geographically 

diverse set of independent locations are combined. 
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Figure 14: MAE of 4 Locations Combined 

 

 

In order to demonstrate why this is occurring, a “worst day” analysis was performed. In 

particular, the “worst day of the year was selected (i.e., the day that had the highest MAE 

calculated using a one-day time period and one-minute time interval for any of the four 

locations). The results are illustrated in Figure 15. The top graph in the figure is a probability 

distribution of the daily MAE for all 4 sites and 365 days per year. As can be seen in the figure, 

the worst day of the year had 103 percent daily rMAE on a one minute basis. 

The black line in the figure points to the graph of the one minute GHI for January 30, 2011, at 

Site B, the worst day and worst site of the year. SolarAnywhere High Resolution clearly over 

predicted irradiance on this day. The prediction at the other three sites, however, was good. As 

a result, the combined error for the day is 33 percent. As shown by the red line in the top 

distribution figure, this was still the day that had the highest daily error, but it is much lower 

than the one site by itself. 
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Figure 15: Worst Day, Worst Site Analysis. 

 

  Site B Had Highest Daily Error on Jan. 30, 2011.  

  The 4 Location Average Reduces Effect. 

 

Furthermore, fleet error appears to be able to be approximated from average individual location 

error as follows. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑒𝑎𝑛 𝐴𝑏𝑜𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟

=
E[𝑀𝐴𝐸 𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙]

√𝑁
+ |E[𝑀𝐵𝐸]| (1 −

1

√𝑁
) 

( 2 ) 

 

where E[] is the expected value, MBE is the mean bias error, and N is the number of 

independent locations. This proposed relationship will have to be ascertained with a larger 

sample of data points, but it can be stated that the √𝑁 dependence is an inference of the 

reasonable assumptions that errors at individual locations are not correlated. This follows along 

the Strong Law of Large Numbers that states that the average of a sequence of independent 

random variables having a common distribution will, with probability 1, converge to the mean 

of that distribution as the number of observations goes infinity [21]. 

2.5 Summary 

Results suggest that, first, satellite-based irradiance has annual error comparable to ground 

sensors. Thus, satellite data may perform as well as ground data for plant siting at a fraction of 

the cost plus the benefit of long-term data streams. It should be noted that ground sensors, even 
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well maintained, produce considerably more invalid data points than the satellite (a ratio of one 

hundred to one in the present study), and that the satellite data were key in detecting these 

erroneous data points (particularly when both redundant sensors were inaccurate at the same 

time).  

Second, high resolution satellite-based irradiance has 10 percent one minute error for a single 

location, making it suited to provide the basis for data required to perform high penetration PV 

studies.  

Third, accuracy improves predictably due to the benefit of geographic dispersion. That is, the 

effect of geographic dispersion on reducing output variability reduction that has been observed 

by others is now also observed with regard to prediction accuracy. 
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Chapter 3:  
PV Fleet Simulation 

3.1 Introduction 

This chapter describes how to generate time series PV fleet production data for consumption by 

CAISO processes. This required the following: 

 Interact with the CAISO to develop a data format specification for time series PV fleet data 

that will be compatible with their system expectations. 

 Design, test, and implement a method to produce a set of synthetic PV fleet performance 

data. 

 Create time series data streams, deliver to the CAISO for their use, and assist the CAISO in 

analyzing, using, and implementing this data as required. 

3.2 Forecast Requirements 

The first step of the process was to interact with the CAISO to develop data format 

specifications for time series PV fleet data that will be compatible with their system 

expectations. The CAISO and CPR met on several occasions to finalize this information. Table 6 

and Table 7 present the CAISO’s near-term and long-term requirements. The requirements are 

classified according to the Real-Time Power Dispatch (RTPD) market and the Day-Ahead 

market. 

The requirements specified how often the forecasts needed to be updated, when the forecasts 

were due, forecast time interval, forecast time horizon, and whether or not the forecasts should 

include uncertainty bounds (i.e., confidence intervals). The goal under this project is to satisfy 

the CAISO’s near-term requirements. Subsequent work will satisfy their long-term 

requirements.  

 

Table 6: Near-Term CAISO Requirements 

Market Update 
Frequency 

Forecast Due Forecast 
Interval 

Forecast 
Horizon 

Include 
Uncertainty? 

Real-Time 
Power Dispatch 

30 min Every 30 
minutes 

15 min 12 hours No 

Day-Ahead Daily 7:45 am of day 
before 

1 hour 6 days No 
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Table 7: Long-Term CAISO Requirements 

Market Update 
Frequency 

Forecast Due  Forecast 
Interval 

Forecast 
Horizon 

Include 
Uncertainty? 

Real-Time 
Power Dispatch 

15 min Every 15 
minutes  

15 min 12 hours Yes 

Day-Ahead Hourly 45 min past 
hour  

1 hour 6 days Yes 

 

3.3 PV Fleet Simulation Method 

The second step was to design, test, and implement a method to simulate PV fleet performance 

data per the CAISO’s requirements listed in Table 6. Three components are required to simulate 

PV fleet power production (as illustrated in Error! Reference source not found.): 

1. Solar resource data. 

2. PV plant specification data. 

3. PV fleet simulation model. 

3.3.1 Solar Resource Data 

The first component that is required to simulate PV fleet power production is the solar resource 

data. The SolarAnywhere Enhanced Resolution data is used for the simulation for all of the 

plants in California. This database consists of solar resource observations produced every 30 

minutes based on satellite imagery for the state of California using a 1 km grid. Higher speed 

data observations are generated using these native images using a cloud motion vector 

interpolation approach. The cloud motion vector approach takes two consecutive images and 

infers cloud movement (i.e., speed and direction) based on a comparison of the two images. 

The SolarAnywhere Standard Resolution data is used for the simulation for the plants in 

Arizona. This database consists of solar resource observations produced every 60 minutes based 

on satellite imagery using a 10 km grid. 

Details of the solar resource data are described above. 

3.3.2 PV Plant Specification Data 

The second component that is required to simulate PV fleet power production is a set of PV 

system specifications. PV systems in California can broadly be categorized as being either 

metered or behind-the-meter. The key is which systems should be included. 

Validating simulated vs. measured data requires that measured data is available. As a result, 

the metered systems provide the basis for validation efforts. An earlier chapter described how 

the CAISO metered fleet consists of 46 PV plants. It also presented the capacity (MW-AC) of 

each system. The total capacity of this fleet is 959 MW-AC. 

Details of this data collection effort are described above. 
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3.3.3 PV Fleet Simulation Model 

The third component that is required to simulate PV fleet power production is a PV fleet 

simulation model. SolarAnywhere® FleetView™ is used for this task. 

One approach to simulating PV fleet output is to calculate average irradiance across the fleet 

and average capacity of the fleet and then to perform a single simulation. This approach, 

however, fails to capture the weather variability associated with specific locations because it 

artificially smooths fleet output. 

FleetView takes a much more detailed approach. Power production is simulated for every PV 

plant independently. The simulations from the individual plants are then summed to obtain 

fleet production. This approach captures site-specific resource variability. 

3.3.4 Rapid Calculations 

In addition to having three requirements to be able to produce the fleet predictions, the 

calculations need to be performed at a speed that satisfied the CAISO requirements. The 

SolarAnywhere FleetView software service was initially designed to provide forecast data 

across large geographic areas for a limited number of PV systems. The CAISO, however, 

required forecast data every 30 minutes for a large number of PV systems (currently at 130,000 

systems). As a result, the method of producing and delivering the data needed to be modified to 

accommodate the CAISO’s requirements. 

Two broad categories of modifications were required. One category was to identify 

inefficiencies in existing solar resource forecast software code and to implement code changes to 

speed processing. Another category was to migrate SolarAnywhere software solution from a 

single server application to a multi-server, cloud-based application. This was required in order 

to make the forecasting process scalable according to the number of PV systems. 

It initially required more than 30 minutes to produce forecasts. This was an issue because the 

CAISO needed a forecast every 30 minutes, but the forecast could not be completed in less than 

30 minutes. The forecast production time has now been reduced to less than 30 minutes. 

3.4 Time Series Data 

The next step was to create time series data streams, deliver the data to the CAISO for their use, 

and assist the CAISO in analyzing, using, and implementing this data as required. CPR began 

producing forecasts and posting them to a secure FTP site in January, 2013. CPR went through 

several months of testing to ensure that the data was reliably delivered. The CAISO has 

initiated the process of downloading the data.  

An Excel file is posted to the secure FTP site every half hour for the RTPD market. A file is 

posted every day for the Day-Ahead market. Each file contains three columns: Period Ending, 

Region, and Power (MW). Figure 16 presents the first several rows in an RTPD file that was 

produced on 5/9/2013 at 10:30. 
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Figure 16: Sample RTPD PV Fleet Forecast File 

 

 

3.5 Summary 

This chapter described how CPR is providing time series PV fleet production data for the 

CAISO. This included interacting with the CAISO to determine forecast data requirements, 

modifying the PV fleet power production simulation method in SolarAnywhere FleetView to 

accommodate these requirements, and creating the time series data. The next chapter validates 

simulated PV fleet power production in comparison to measured data provided by the CAISO. 
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Chapter 4:  
PV Fleet Simulation Validation 

4.1 Introduction 

This chapter describes the validation of simulated PV fleet production using measured data 

provided by the CAISO. This required the following: 

 Work with the CAISO to determine data availability, resolve time synchronization issues, 

and take steps necessary to ensure data integrity. 

 Obtain data and upload to the contractor’s data servers. 

 Perform analysis using methods previously used for similar United States data sources. 

4.2 Approach 

Validation requires simulated and measured data. The previous chapter discussed how the data 

was simulated using FleetView. The measured data was provided by the CAISO. The CAISO 

measures power production every four seconds for 46 PV plants. A 15-minute time interval is 

critical to the CAISO’s forecasting efforts above. Thus, the four-second measured PV power 

production was averaged to 15-minute data. 

4.3 Results 

4.3.1 Sources of Error 

Inaccuracies degrade the ability of the simulation to reflect measured performance. These 

inaccuracies can be grouped into three categories. 

1. Solar resource. 

2. PV modeling. 

3. PV plant performance issues. 

Solar resource inaccuracies include errors in historical or forecasted solar resource data. PV 

modeling inaccuracies refer to limitations in the PV fleet modeling algorithms. PV plant 

performance issues reflect errors that occur because the plant is not operating as expected.  

The effects of solar resource and PV modeling inaccuracies are fairly obvious. Inaccurate solar 

resource data (historical or forecasted) and/or PV fleet modeling algorithms clearly limit the 

simulation’s ability to reflect measured performance. 

PV plant performance issues are more subtle. Differences between simulated and measured PV 

production can still occur even if the simulation method perfectly predicts measured PV fleet 

power production for a fleet that is operating perfectly. Differences can occur if the actual PV 

fleet does not operate as expected due to system performance issues. That is, inaccuracies can 

occur that are unrelated to the fundamental simulation methodology. They are related to lack of 

incorporation of poor performance into the simulation. 
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4.3.2 PV Plant Performance Issues 

The first step of the evaluation, therefore, is to determine how to address PV performance 

issues. One option is to incorporate plant status into the simulation methodology. The 

simulation, for example, would reflect a capacity reduction if a plant was only operating at 50 

percent capacity. This option requires obtaining PV plant status information. This information, 

unfortunately, was unavailable for the CAISO fleet of PV systems. 

An alternative approach is to identify days when the individual plants had sub-par 

performance. These days and plants are then eliminated from the fleet simulation. This is the 

approach that was taken for this project. 

Fifteen-minute measured and simulated data were obtained for 46 CAISO metered PV plants 

from March 10, 2013 to April 19, 2013. The time series data were compared for each of the plants 

individually. The data was visually examined to assess days when the PV plant was either not 

operating or was clearly underperforming. Figure 17 and Figure 18 present the results of the 

analysis for two of the 46 plants. The red and blue lines correspond to simulated and measured 

data. The shaded areas represent days with plant performance issues. The dashed line 

corresponds to the daily rMAE. Figure 17 corresponds to a plant that operated well during the 

whole time period. Figure 18 corresponds to a plant that had significant operational issues. 

 

Figure 17: Example of PV Plant that Operated as Expected 
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Figure 18: Example of PV Plant with Possible Performance Issues 

 

 

This process was repeated for all of the plants. Figure 19 summarizes plant performance for all 

46 plants. The y-axis corresponds to the plant number and the x-axis corresponds to the date. 

Blue corresponds to normal operation and red corresponds to performance issues. The figure 

suggests that the PV fleet experienced a significant number of performance issues over the six-

week analysis period. 

 

Figure 19: Summary of Performance Issues for All Metered Plants 
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4.3.3 PV Fleet Simulations 

4.3.3.1 Time Series Data 

Simulations were performed using FleetView with and without plant filtering results from the 

previous section. Figure 20 presents PV fleet output without filtering. Figure 21 presents PV 

fleet output with filtering. A comparison of the two figures illustrates the improvement in 

accuracy by taking PV plant performance issues into consideration. 

 

Figure 20: PV Fleet Production before PV Performance Filtering 

 

 

Figure 21: PV Fleet Production after PV Performance Filtering 
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4.3.3.2 Simulated vs. Measured Data 

An alternative way to present the data in Figure 20 is to plot simulated vs. measured average 

power for each 15-minute interval. Figure 22 presents the data in this manner. All of the blue 

markers would be on the red line if simulated and measured results matched perfectly. The top 

of the figure corresponds to the “Initial” case of PV fleet output without PV performance 

filtering (it corresponds to Figure 20). A consistent power-related bias can be observed.  

This bias can be reduced by applying the tuning curve presented in Figure 23. The “Tuned” 

case is presented in the center of Figure 22. Significant scatter, however, can still be observed. 

This can be reduced by filtering the data for PV performance using the filtering from the 

previous section.  

The “Tuned & Filtered” case is presented in the bottom of Figure 22. There is a good alignment 

between simulated and measured data after making the tuning and filtering adjustments.  

 

Figure 22: Simulated vs. Measured Average 15-Minute Power for CAISO Metered PV Fleet 

In
it

ia
l 

 

T
u

n
e
d

 

 



 

32 

T
u

n
e
d

 &
 F

il
te

re
d

 

 

 

Figure 23: Power-Based Simulation Tuning 

 

 

4.3.4 Relative Mean Absolute Error 

The final step of the analysis is to calculate the rMAE. The time series data were evaluated over 

the approximately six-week time period for the 15-minute time interval data. Figure 24 presents 

results for three cases: Initial, Tuned, and Tuned & Filtered. These cases correspond to the 

results presented in Figure 22. Results show that the Initial, Tuned and, Tuned & Filtered cases 

have 7.2, 5.2, and 3.1 percent rMAE. 

Several observations can be made based on these results. First, overall, FleetView PV power 

modeling is pretty accurate. There is, however, room for improvement. In particular, improving 

the inverter power curve model for individual PV systems will substantially improve 

simulation results (i.e., the improvement identified by applying the tuning).  

Second, there is a substantially negative effect due to poorly performing plants even after the 

PV fleet model has been tuned. Accurately representing plant status reduces error by more than 

40 percent.  
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Third, three percent rMAE can be achieved for 15-minute time interval data using a well-tuned 

model that accounts for poor PV plant performance. This requires that: (1) accurate location-

specific solar resource data is supplied; (2) correct PV specifications are used; (3) the inverter 

power curve is properly represented (i.e., the simulation is tuned); and (4) actual PV plant 

status is incorporated into the simulation.  

 

Figure 24: Total rMAE 

 

 

It is useful investigate the error on a daily basis in addition to an analysis over the entire time 

period. Figure 25 and Figure 26 presents the daily rMAE for the 15-minute time interval before 

and after tuning the model. The blue and red colors correspond to simulation error and PV 

plant performance error respectively. PV plant performance error is estimated by subtracting 

simulation error with and without filtering. The figure shows that rMAE varies from day to 

day. While absolute error increases on some of days, rMAE tends to be higher on low energy 

days. This is because the rMAE calculation is defined as absolute error divided by measured 

energy.  
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Figure 25: Daily Relative MAE Using 15-Minute Time Interval before Tuning 

 

 

Figure 26: Daily Relative MAE Using 15-Minute Time Interval after Tuning 

 

 

4.3.5 Sample Days After Tuning and Filtering 

It is useful to compare simulated and measured data for a range of days after tuning and 

filtering. Figure 27, Figure 28, and Figure 29 present measured and simulated PV fleet 

production. Figure 27 corresponds to a clear day. Figure 28 corresponds to a day with PV 

performance issues. Figure 29 corresponds to a day with variable weather and PV performance 

issues. 
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Several observations can be made. First, tuning the simulation model increases accuracy for all 

days. Second, modeling on a clear day is very good with a rMAE of less than 2 percent. Third, 

filtering for PV plant performance issues can be very important; rMAE was reduced from 20 

percent to 4 percent on one particular day. Fourth, simulated data tracks measured data fairly 

well even for the worst performing day.  

 

Figure 27: PV Fleet Production on Clear Day  
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Figure 28: PV Fleet Production on Day with Production Issues  
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Figure 29: PV Fleet Production on Variable Weather Day with Production Issues  
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Chapter 5:  
Conclusions and Future Research 

5.1 Conclusions 

CPR has developed a unique method to predict PV fleet power production. The method uses 

inputs of satellite-derived solar resource data and the design attributes and locations of PV 

systems. It combines these inputs with advanced algorithms to track cloud patterns to predict 

output. 

The objective of this project was to validate simulated PV fleet power production using 

measured PV fleet power production. This required: 

 Obtaining PV system specifications for all PV systems in California. 

 Obtaining solar resource data for the location of each PV system. 

 Obtaining measured PV power production data for a subset of the fleet of systems. 

 Screening the measured data for performance issues. 

 Simulating PV fleet output using SolarAnywhere FleetView. 

 Comparing measured and simulated results. 

Results suggest that 3 percent Relative Mean Absolute Error (rMAE) can be achieved for 15-

minute time interval data given that: 

 Accurate location-specific solar resource data is supplied. 

 Correct PV specifications are used. 

 The PV simulation model is properly tuned. 

 PV plant operating status is reflected in the simulation to account for poor performance. 

Total error can be caused by solar resource inaccuracies, PV simulation model inaccuracies, and 

PV plant performance issues. Results also suggest that total error was over 7 percent if the 

model was not tuned and PV plant operating status was not reflected in the simulation. 

This research also has the following benefits to CAISO: 

 Prediction of behind-the-meter PV fleet performance for 1st time 

 Fleet forecasts categorized by CAISO’s five regions for both behind-the-meter and 

metered PV 

 Gained confidence in CPR’s PV fleet simulation accuracy 

 Gained understanding into performance of metered PV plants 

 Positioned to begin evaluation of integration of PV fleet forecasts into load forecasts 

 PV fleet prediction tools available to support for PV fleet forecasting 

 PV fleet prediction tools available to produce data required for high PV penetration grid 

planning 
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5.2 Future Research 

There are several areas of future research.  

 Improve inverter power curve modeling to reduce the need for tuning. 

 Implement SolarAnywhere Enhanced Resolution data in Arizona to increase solar 

resource data resolution for all plants (i.e., Arizona plants, which represent almost half 

of the measured fleet capacity, currently use Standard Resolution data). 

 Expand the analysis to incorporate solar resource forecast error. 

 Incorporate PV plant performance status into the simulation to reduce total error. 

 Continue validation efforts, especially during worst case conditions, to provide 

guidance as to how to use the data and to identify areas for improvement. 

 Expand the analysis to probabilistic forecasting. 

 Continue efforts to integrate results in to the CAISO processes.  
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Appendix A:  
Reporting of Relative Irradiance Prediction Dispersion 
Error 

Introduction 

Statistical methods for calculating and quantifying error have long been established across a 

wide range of sciences and industries. Whether quantifying the accuracy of an electrical meter, 

the tolerance of a precision part, or the expected range of forecasted temperatures, the methods 

for determining error are generally accepted. It is somewhat surprising, then, that these same 

methods have proved confusing and sometimes misleading when applied to commonly used 

diurnal quantities in the solar energy field.  

Error calculations related to solar irradiance and PV power production, for example, are 

complicated by observations taken during nighttime and other low solar conditions. These 

conditions are often of little interest to the solar researcher, but they do cover the majority of 

time over a multi-day test period. Since these observations are subject to very low absolute 

error, their inclusion and weighting have a large impact on overall relative error. 

As part of recent European and International Energy Agency (IEA) tasks [22], [23], a group of 

experts have developed recommendations for reporting irradiance model accuracy [24], [25]. 

Root Mean Square Error (RMSE), Mean Bias Error (MBE) and Kolmogorov Smirnoff Integral 

(KSI) are the three key recommended validation metrics. These respectively provide a measure 

of model’s dispersion (RMSE), overall bias (MBE), and ability to reproduce observed frequency 

distributions (KSI).  

In many contexts, however, relative error is more commonly desired than absolute error. While 

the IEA tasks developed recommendations for absolute errors, they have not developed 

recommendations on how to calculate error in percentage terms, aside from using the 

informally (but not universally) accepted approach of dividing RMSE by the day-time mean of 

the considered irradiance. This is unfortunate because users in the utility industry desire to 

understand error in relative terms rather than absolute terms.  

A simplified reporting approach for the %KSI metric was proposed in a recent article [26]. The 

present note focuses on the relative dispersion error metrics (RMSE and MAE) with the 

objective of setting a standard for reporting these metrics in the industry and research 

community to facilitate comparison between forecast models.  

Forecast model error also depends on meteorological conditions, forecast horizon, and 

averaging interval. There is not an attempt to create a metric that makes forecasts comparable 

across these dependencies. Rather, the focus is on which metric should be chosen to compare 

two forecasts at the same site, same forecast horizon, and same averaging interval. This 

discussion only focuses on methods concerned with expressing the relative error between two 

time series with a single statistic.   
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It should be remembered that methods that calculate relative or absolute error for each value in 

the time series may be more useful in practice, since they can uncover patterns that are 

obscured when the error for time series prediction is lumped into a single statistic. 

Absolute errors 

Root Mean Square Error (RMSE) 

The RMSE is defined to be the square root of the sum of the squares of the difference between 

modeled and reference irradiances using some time interval (e.g., hourly) over some time 

period (e.g., one year) divided by the number of observations. 

𝑅𝑀𝑆𝐸 = √∑ (𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁
𝑡=1

𝑁
 

(3) 

 

where 𝐼𝑡
𝑡𝑒𝑠𝑡 is the test irradiance at time t, 𝐼𝑡

𝑟𝑒𝑓
 is the reference irradiance at time t, and N is the 

number of observations. 

One ambiguity with the RMSE calculation (as well as all other error calculations that involve 

any sort of averaging) is that a decision is required as to whether or not to include all values. 

The prevalent practice in the solar resource community has been to only include daytime 

values, sometimes filtered by solar zenith angle less than 80˚ to avoid shading and/or sensor 

cosine response issues under low sun angles.  

Mean Absolute Error (MAE) 

The MAE is defined to be the sum of the differences between modeled and reference irradiances 

using some time interval over some time period divided by the number of observations. 

𝑀𝐴𝐸 =
∑ |𝐼𝑡

𝑡𝑒𝑠𝑡 − 𝐼𝑡
𝑟𝑒𝑓

|𝑁
𝑡=1

𝑁
 (4) 

Relative (Percent) Errors 

Quantifying relative error requires that absolute error (i.e., RMSE or MAE) be divided by a 

normalizing number. To emphasize, the normalization is not carried out for each 𝐼𝑡
𝑡𝑒𝑠𝑡 and 

𝐼𝑡
𝑟𝑒𝑓

pair, but rather using a single number representative of typical irradiances during the entire 

time series. Three possible candidates to use in the denominator to calculate Percent Error are:  

 Average irradiance (Avg.). 

 Weighted average irradiance (Weighted Avg.). 

 Maximum nominal irradiance (Capacity). 

Average 

Average irradiance equals the sum of the irradiance values divided by the number of 

observations. 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐼𝑡

𝑟𝑒𝑓𝑁
𝑡=1

𝑁
 (5) 

Weighted Average 

Weighted Average irradiance may be used to assign more importance to high-level irradiance 

observations. It is defined to be the sum of the irradiance values weighted by a factor. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑊𝑡𝐼𝑡
𝑟𝑒𝑓

𝑁

𝑡=1

 (6) 

One meaningful way to weight the irradiance is by its magnitude. That is, let 

𝑊𝑡 =
𝐼𝑡

𝑟𝑒𝑓

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

 (7) 

Substituting Equation (7) into Equation (6) results in a Weighted Average of  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ (𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁
𝑡=1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

 (8) 

Unlike for the simple average, the day-time weighted average equals the 24-hour weighted 

averages since the weight of night-time points is zero. 

Capacity  

A third option is the peak irradiance or Capacity (C). For global horizontal irradiance, for 

example, the Capacity would be 1,000 W/m^2. 

The wind industry has adopted this approach of normalizing to installed generating capacity 

for the reporting of output prediction errors [27]. 

Percent Error Calculation Methods 

With two measures of dispersion (RMSE and MAE) and three normalizing means, there are six 

possible methods to calculate Percent Error. These methods are summarized in Table 8.   
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Table 9 presents the mathematical definitions used to calculate Percent Error by combining 

Equations (3) through (8) (see appendix for the detailed derivations). 

 

Table 8: Possible Percent Error Calculation Methods 

 RMSE MAE 

Average RMSE/Avg. MAE/Avg. 

Weighted Average RMSE/Weighted Avg. MAE/Weighted Avg. 

Capacity RMSE/Capacity MAE/Capacity 

 

Table 9: Mathematical Definitions of Percent Error Methods 

Percent Error Method Definition 

RMSE/Avg. 

√𝑁 (
1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

) √∑(𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁

𝑡=1

 

RMSE/Weighted Avg. 

[
1

√𝑁
] [

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

∑ (𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1

] √∑(𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁

𝑡=1

 

RMSE/Capacity 

(
1

√𝑁
) (

1

𝐶
) √∑(𝐼𝑡

𝑡𝑒𝑠𝑡 − 𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁

𝑡=1

 

MAE/Avg. 
(

1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

) ∑|𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
|

𝑁

𝑡=1

 

MAE/Weighted Avg. 
[

1

𝑁
] [

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

∑ (𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1

] ∑|𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
|

𝑁

𝑡=1

 

MAE/Capacity 

(
1

𝑁
) (

1

𝐶
) ∑|𝐼𝑡

𝑡𝑒𝑠𝑡 − 𝐼𝑡
𝑟𝑒𝑓

|

𝑁

𝑡=1

 

 

24 Hours vs. Daytime 

The effect of including 24 hours in the analysis vs. only including daytime values can be 

analyzed using the equations presented in   
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Table 9. Total Error (i.e., √∑ (𝐼𝑡
𝑡𝑒𝑠𝑡

− 𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1  or ∑ |𝐼𝑡

𝑡𝑒𝑠𝑡
− 𝐼𝑡

𝑟𝑒𝑓
|𝑁

𝑡=1 ) remains unchanged by including 

night-time values.  However, Absolute Error (RMSE or MAE) is affected by the distinction since 

the results are obtained by dividing Total Error by the number of considered points. Percent 

Error is further affected by the daytime vs. 24-hour distinction since the normalizing means are 

different. 

Table 10 summarizes the impact of the distinction on the selected error reporting metrics. It 

shows that Percent Error calculated using RMSE/Avg. method increases from 24 hour to 

daytime, the MAE/Avg. is unchanged, and Percent Error calculated using the other four 

methods decreases.  

In all of the changed scenarios, the change is a function of the fraction of daytime hours. For 

example, if there are 4,380 daytime hours in a 12-month test period, the fraction Daytime Hours 

is 0.5. If night time hours are considered, Percent Error calculated using RMSE/Avg. will increase 

by 41 percent (√
1

0.5
), Percent Error calculated using RMSE/Weighted Avg. will decrease by 29 

percent (√0.5), and Percent Error calculated using MAE/Weighted Avg. or MAE/Capacity will 

decrease by 50 percent. The only method independent of nighttime hours is the MAE/Avg. 

method. 

 

Table 10: Ratio of Percent Error Using All Hours to Percent Error Using Daytime Hours 

Percent Error Method Ratio of Daytime to 24h Percent Error 

 √
𝑁𝐴𝑙𝑙 𝐻𝑜𝑢𝑟𝑠

𝑁𝐷𝑎𝑦𝑡𝑖𝑚𝑒 𝐻𝑜𝑢𝑟𝑠
 

100% 
(No change) 

√
𝑁𝐷𝑎𝑦𝑡𝑖𝑚𝑒 𝐻𝑜𝑢𝑟𝑠

𝑁𝐴𝑙𝑙 𝐻𝑜𝑢𝑟𝑠
 

𝑁𝐷𝑎𝑦𝑡𝑖𝑚𝑒 𝐻𝑜𝑢𝑟𝑠

𝑁𝐴𝑙𝑙 𝐻𝑜𝑢𝑟𝑠
 

RMSE/Avg.     

RMSE/Weighted Avg.     

RMSE/Capacity     

MAE/Avg.     

MAE/Weighted Avg.     

MAE/ Capacity     

 

Application Example 

An effective way to compare and contrast the six possible methods is to quantify results using 

an actual irradiance data set. Hourly satellite-derived global horizontal insolation (GHI) data 

was obtained for Hanford, CA, from January 1, 2010 to December 31, 2010. The reference data 

are from a high-quality ISIS ground site [28]. The modeled data are from a satellite-based 

irradiance service [14].  

Figure 30 plots one year’s worth of hourly modeled data vs. measured data. A perfect match 

would occur if all blue dots were on the red line. As can be seen from the figure, the selected 

modeled data are a good visual match to the reference data.  
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Figure 30: Irradiance Data for Hanford, CA, 2010 

 

 

Figure 31 presents Percent Error for the six methods using the two scenarios of All Hours (24 

hours per day) and Daytime Hours only. The “All Hours” scenarios are represented by the 

black bars. The “Daytime Hours” are represented by the white bars. Several observations can be 

made based on the figure: 

 Percent Error ranges by a factor of more than 10 depending upon which method and 

scenario is selected 

o RMSE/Avg. method using nighttime values results in a 17.0 Percent Error. 

o MAE/Capacity method using nighttime values results in 1.5 Percent Error. 

 The exclusion/inclusion of nighttime values changes results for five of the six definitions; 

Percent Error is lower for one case and higher for four cases. 

 Only the MAE/Avg. Percent Error definition is independent of the inclusion of nighttime 

data. 
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Figure 31: Comparison of Error Results for Six Methods Using “All Hours” and “Daytime Hours” 
for Hanford, CA, 2010 

 

 

Threshold Dependence 

The Irradiance Threshold is the value below which data are excluded. Use of a threshold is 

relevant because while the current practice is to exclude night-time values, the industry lacks a 

precise definition of what is night-time. Is night-time when irradiance is 0 W/m^2, 0.1 W/m^2, 1 

W/m^2? 

The 24-hour and daytime scenarios are specific threshold points, occurring respectively when 

irradiance is larger than, or equal to a zero Irradiance Threshold for the former and above the zero 

Irradiance Threshold for the latter. 

Figure 32 presents the percent of solar energy that occurs below a given Irradiance Threshold. It is 

interesting to note that much of the collectable energy resides above significant threshold levels. 

For example, the dashed line shows that GHI observations less than an Irradiance Threshold of 

250 W/m2 correspond to only 8 percent of the annual GHI at Hanford, CA in 2010. 
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Figure 32: Energy Distribution of Irradiance Data for Hanford, CA, 2010 

 

 

Figure 33 presents Percent Error as a function of Irradiance Threshold for all six methods. Several 

observations can be made based on the figure. 

 All Percent Error definitions based on RMSE converge to the same result as the Irradiance 

Threshold increases. 

 All Percent Error definitions based on MAE converge to the same result as the Irradiance 

Threshold increases. 

 RMSE/Weighted Avg. results are similar to MAE/Avg. when “Daytime Hours” are 

included. 
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Figure 33: Comparison of Error Results for Hanford, CA, 2010 

 

 

RMSE vs. MAE 

Aside from the Percent Error reporting issue, it is worthwhile to explore the question whether 

the RMSE or the MAE is the most appropriate method to report dispersion error. 

The main difference between the two is that the RMSE is driven by the square of the differences 

unlike the MAE. As a result, outliers are considerably more influential on the reported accuracy 

when using the RMSE metric. In the above example the addition of four far outliers to the data 

set (representing 0.1 percent of the data samples) increases the RMSE by a factor of 1.12, but 

only increases the MAE by a factor of 1.04. 

Discussion  

Table 4 summarizes the comparative observations made above using a subjective grading for 

the attributes of each relative dispersion error reporting method. The attributes we considered 

include: 

 Whether the method is commonly accepted, 

 Whether it is simple to understand 

 Whether it depends on the 24-hr vs. daytime only distinction 

 Whether it depends on the data selection threshold 

 Whether it is affected by outliers 
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A grade of 0 to 2 is assigned to each method to represent its strength (2) or its weakness (0) with 

respect to a given attribute. 

 

Table 11: Subjective Evaluation of Relative Error Reporting Method. 

 

Commonly 
accepted 

Simple to 
understand 

Depends 
on night 

time 
Values 

Depends 
on 

selected 
threshold 

Affected 
by 

outliers 

Total 

RMSE/Avg. 2 2 0 0 0 4 

RMSE/Weighted Avg. 0 1 1 1 0 3 

RMSE/Capacity 2 2 1 1 0 6 

MAE/Avg. 1 2 2 1 1 7 

MAE/Weighted Avg. 0 1 0 1 1 3 

MAE/ Capacity 0 2 0 2 1 5 

 

The MAE/Avg. provides the best practical measure of relative dispersion error based on the 

selected evaluation criteria and the subjective evaluations. The MAE/Avg. is attractive in that it 

is independent of the number of observations and is simple to understand. The RMSE/Capacity 

method is also desirable because it is commonly accepted (the wind power industry has already 

adopted this method) and is simple to understand. 

The value of agreeing on a simple to calculate method has the benefit that multiple predictions 

and forecasts can be quickly evaluated and compared. Given that irradiance and PV power 

predictions and forecasts will be applied to a variety of applications (resource assessment, 

electrical grid operations and planning, etc.), it is not expected that the single statistic proposed 

here will necessarily be a complete measure of forecast quality. The authors, however feel that it 

is a good start towards promoting a standard metric in the industry.  
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Appendix B:  
Percent Error Calculations 

This appendix derives the Percent Error calculations based on the definitions of RMSE, MAE, 

Avg., Weighted Avg., and Capacity. 

 

RMSE/Avg. 

𝑅𝑀𝑆𝐸/𝐴𝑣𝑔. =

√∑ (𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁
𝑡=1

𝑁

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1
𝑁

=
√𝑁

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

√∑ (𝐼𝑡
𝑡𝑒𝑠𝑡

− 𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁

𝑡=1

 
(9) 

 

RMSE/Weighted Avg. 

𝑅𝑀𝑆𝐸/𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔. =

√∑ (𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁
𝑡=1

𝑁

∑ (𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

= [
∑ 𝐼𝑡

𝑟𝑒𝑓𝑁
𝑡=1

√𝑁 ∑ (𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1

] √∑ (𝐼𝑡
𝑡𝑒𝑠𝑡

− 𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁

𝑡=1

 (10) 

 

RMSE/Capacity 

𝑅𝑀𝑆𝐸/𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

√∑ (𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁
𝑡=1

𝑁
C

= (
1

𝐶√𝑁
) √∑ (𝐼𝑡

𝑡𝑒𝑠𝑡
− 𝐼𝑡

𝑟𝑒𝑓
)

2
𝑁

𝑡=1

 
(11) 

 

MAE/Avg. 

𝑀𝐴𝐸/𝐴𝑣𝑔. =

∑ |𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
|𝑁

𝑡=1

𝑁

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1
𝑁

= (
1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

) ∑ |𝐼𝑡
𝑡𝑒𝑠𝑡

− 𝐼𝑡
𝑟𝑒𝑓

|

𝑁

𝑡=1

 (12) 



 

B-2 

MAE/Weighted Avg. 

𝑀𝐴𝐸/𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔. =

∑ |𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
|𝑁

𝑡=1

𝑁

∑ (𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1

∑ 𝐼𝑡
𝑟𝑒𝑓𝑁

𝑡=1

= [
∑ 𝐼𝑡

𝑟𝑒𝑓𝑁
𝑡=1

𝑁 ∑ (𝐼𝑡
𝑟𝑒𝑓

)
2

𝑁
𝑡=1

] ∑ |𝐼𝑡
𝑡𝑒𝑠𝑡

− 𝐼𝑡
𝑟𝑒𝑓

|

𝑁

𝑡=1

 (13) 

 

MAE/Capacity 

𝑀𝐴𝐸/𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =

∑ |𝐼𝑡
𝑡𝑒𝑠𝑡 − 𝐼𝑡

𝑟𝑒𝑓
|𝑁

𝑡=1

𝑁
C

= (
1

𝐶𝑁
) ∑ |𝐼𝑡

𝑡𝑒𝑠𝑡
− 𝐼𝑡

𝑟𝑒𝑓
|

𝑁

𝑡=1

 
(14) 
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Appendix C:  
Half-hour Irradiance Data for Six CAISO Locations 
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