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Legal Notice from Clean Power Research 

This report was prepared for Itron, Inc. by Clean Power Research. This report should not be construed as 

an invitation or inducement to any party to engage or otherwise participate in any transaction, to 

provide any financing, or to make any investment.  

Any information shared with Itron prior to the release of the report is superseded by the report. Clean 

Power Research owes no duty of care to any third party and none is created by this report. Use of this 

report, or any information contained therein, by a third party shall be at the risk of such party and 

constitutes a waiver and release of Clean Power Research, its directors, officers, partners, employees 

and agents by such third party from and against all claims and liability, including, but not limited to, 

claims for breach of contract, breach of warranty, strict liability, negligence, negligent 

misrepresentation, and/or otherwise, and liability for special, incidental, indirect, or consequential 

damages, in connection with such use. 
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Executive Summary 

Under this project, solar power forecasts were provided to the California ISO (CAISO) via two 

mechanisms. First, behind-the-meter “embedded” systems offset loads at the customer level. 

Aggregated forecasts of these “fleets” are used in combination with load forecasts to develop  the 

forecast at the utility level to be served by the wholesale market. Second, utility scale “grid-connected” 

systems feed the wholesale markets directly within CAISO, so solar forecasts inform what units need to 

be scheduled to supplement the non-dispatchable renewable sources. 

This report describes new methods for improving both of these solar production forecasts under Task 3 

of the Itron EPIC project EPC-14-001 of the California Energy Commission (CEC), for which Clean Power 

Research (CPR) was a major subcontractor. Task 3 covers a broad range of activities that led directly to 

improvements in CPR’s ability to efficiently and accurately produce solar production forecasts for the 

California electric grid. Task 3 also included work related to a dashboard information system (to be 

evaluated by Itron) and that work is not covered here. 

Enhancements Using Embedded System Production Data 

Several forecast improvements relied upon a data set of individually metered production systems from a 

third party source. Prior to this project, SolarAnywhere FleetView treated systems as if newly installed: 

they were always available for service, they operated as new, there was no age-induced module 

degradation, and they were free from dust and dirt. In reality, none of these assumptions are true. This 

project developed and evaluated methods for incorporating these real-world effects into the forecasts. 

Methods were advanced for determining system specifications and shading based on measured 

production inputs. FleetView has historically relied upon data provided by the installers, including PV 

module make/model, array orientation (tilt and azimuth angles), inverter make/model, and shading 

profiles. However, this data is not always accurate. Installers may input incorrect information (e.g., using 

a different azimuth angle convention than the convention assumed by FleetView) or they may not 

include shading even if obstructions exist that would significantly impact production.  

The project included the development of methods to use measured production data in order to confirm 

or correct system specifications. System specifications are adjusted to minimize error in production 

profiles relative to actual output.  

Other Forecast Improvements 

Other forecast improvements include the following. The first relates to inverter efficiency, which is a 

function of power level. Prior forecasts used a fixed, default power curve applied to all inverters for 

simplicity. Under this project, the use of model-specific inverter power curves was evaluated and built 

into software. 
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Additional work focused on improving the operational SolarAnywhere forecast models at both the 

short-term (hour ahead) and longer-term (day ahead) time horizons by using advanced ensemble 

methods leveraging forecasts from multiple sources. 

Methods were evaluated for increasing the performance of the forecasts, such as through the use of 

representative, rather than actual, fleets. These methods reduce the number of systems for simulation, 

thereby reducing computation time. This may be important as the number of systems increases with 

higher penetration levels. 

Historical simulations were developed and provided to Itron for training by their neural network. This 

activity improved the net load forecasts that were delivered to CAISO. 

Data on system sizing and installation dates were collected from the three California IOUs. A process 

was developed to automatically update FleetView to take advantage of this and use it to scale up the 

fleet forecasts. 

Project Partnerships 

Utility partner meetings were held to gather input on applicability beyond the ISO.  Project meetings 

were held with partners, Sacramento Municipal Utility District (SMUD), Southern California Edison (SCE) 

and Pacific Gas & Electric (PG&E).  Together, we identified the use of the PV simulation tools for 

quantifying the impact of distributed PV on the distribution grid, and more regionalized BTM PV forecast 

for utility load modeling as key areas of interest. 

In addition, several of the forecast improvements were demonstrated in SCE’s Preferred Resources Pilot 

(PRP) program. This demonstration covered two feeders in their service territory: Johanna and Santiago. 

These feeders have roughly 4,500 PV installations tied to both residential and commercial buildings.  To 

support the PRP, CPR and Itron are validating their set of modeling tools against measured PV 

production data from these two regions.  The regions sit within a challenging climate that blends coastal 

fog formation and pushes inland towards hot and arid conditions.  This report describes the validation of 

the CPR PV model output against measured PV meter data for a number of unique PV systems in the 

Johanna and Santiago regions. 
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Introduction and Background 

The key challenge facing the California ISO (CAISO) and the electric utilities as they integrate higher and 

higher concentrations of PV into the grid is the uncertainty associated with PV generation profiles. PV is 

inherently a variable resource and utilities are charged with maintaining high system reliability at low 

costs. The uncertainty in PV is reflected in conservative scheduling of regulation and spinning reserves. 

The work described in this report was done under California Energy Commission (CEC) contract EPC-14-

001. The work covers Task 3 of the project related to improvents in forecasting accuracy for behind-the-

meter (embedded) PV and utility-scale (grid-connected) systems. This work covers a broad range of 

activities that led directly to improvements in CPR’s ability to efficiently and accurately produce solar 

production forecasts for the California electric grid.  

Forecasts are used in two ways: (1) embedded system fleet forecasts are delivered to Itron as inputs to 

net-load forecasts; and (2) grid-connected system forecasts can be used by CAISO to schedule units for 

delivering the net forecasted load. Both of these forecasts use CPR’s SolarAnywhere FleetView software 

product, into which the improved methods are incorporated. 

Project Partnerships 

As part of the project, utility partner meetings were held to gather input on applicability beyond the ISO.  

Project meetings were held with partners SMUD, SCE and PG&E.  Key areas of interest were identified to 

be the use of the PV simulation tools for quantifying the impact of distributed PV on the distribution grid 

and more regionalized BTM PV forecast for utility load modeling. 

The specific use case for PG&E was the PV modeling for distribution grid planning.  As the number and 

capacity of distributed PV continues to grow in PG&E territory, the cost of and uncertainty around 

operating the distribution grid is growing.  Distributed PV can create a number of problems at the 

distribution level. The problems largely arise when the PV capacity becomes a significant portion of the 

regional load. PG&E was seeking to quantify the regional, feeder-level capacity and energy contribution 

of distributed PV. This project demonstrated that the PV modeling tools were useful in demonstrating 

capacity and energy contribution Challenges were encountered, however, when system shading 

information was not recorded. Activities included: 

 

• Held meetings with project partners SMUD, SCE, and PG&E 

• Refined utility partner BTM/utility-scale PV fleet grouping capabilities 

• Performed in-depth PG&E and SCE sub-fleet modeling analysis. 
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Enancements Using Embedded System 
Production Data 

Several forecast improvements relied upon a data set of individually metered production systems from a 

third party source. This data was used to gauge the effectiveness of the new methods in improving 

simulation accuracy and, by extension, forecast accuracy, which relies on the simulations. Improvements 

include the incorporation of module degradation effects, module soiling, system availability, and the 

accuracy of system design specifications. 

Prior to this project, SolarAnywhere FleetView treated systems as if they were newly installed: they 

were always available for service (i.e., they were on-line), they operated as newly installed, there was no 

age-induced module degradation, and they were free from dust and dirt. In reality, none of these 

assumptions are true. Methods were developed and evaluated under this project methods to incorporat 

these real-world effects into the forecasts. 

Module Degradation 

Effect of Module Degradation on Modeling Accuracy 

Although CPR’s PV modeling tools have long applied module degradation, the effect has generally been 

applied starting at the beginning of the simulation period. In other words, if you specified a degradation 

rate of 0.5% per year, and simulated the period from January 1, 2015 to January 1, 2016, the module’s 

rating as of January 1, 2016 would be reduced by exactly 0.5% from its value on January 1, 2015. When 

working with newly installed or hypothetical systems, this is exactly the behavior desired. However, 

when modeling output for a 10-year-old system, the module rating should already be reduced by 5% on 

January 1, 2015 and should be reduced by an additional 0.5% by January 1, 2016. 

CPR added a commissioning date to all system specifications, not previously available in FleetView. The 

module degradation can now be calculated at the specified rate beginning on that date, regardless of 

the time period being simulated. 

To estimate the effect that this change might have in a real-world application, CPR simulated the SDG&E 

BTM fleet of approximately 14,000 systems for a single day (July 4, 2013) using a 0.5% annual 

degradation rate and a per-system commissioning date based on the system’s California Solar Initiative 

(CSI) incentive payment date. Systems were installed as early as 2008, but typical age was about 2-3 

years. Note that 2013 was a transition year where new installations were no longer being funded under 

CSI, so this analysis was performed for mid-2013 where reliable data was available. 

Total daily fleet energy production without degradation was 883 MWh and peak power was 113 MW 

AC. With degradation, total daily energy production dropped to 874 MWh and peak power was 112 MW 
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AC. The relative Mean Absolute Error in power production over the course of the day was 1.03%. Figure 

1 shows SDG&E fleet production for July 4, 2013 with and without the effects of module degradation. 

 

Figure 1. Effects of Module Degradation 

 

Methodology 

The following process was applied the data Itron collected on behalf of the California Solar Initiative to 

identify a degradation signal.  

1. Obtain SolarAnywhere 1 km V2.5 data. 
2. Obtain PV specifications from PowerClerk. 
3. Use PVSimulator to model PV power production using data from steps 1 and 2. 
4. Align hourly ground power data and hourly SolarAnywhere historic power for each site. Remove 

negative ground values and non-zero nighttime ground values from the data. 
5. Calculate annual MAE for each year between SolarAnywhere power and ground power, from 

2011-2015, for each site. Periods of time when ground data was not present or zero were not 
included in the calculations. 

6. Discard any MAE value greater that 20% from consideration 
7. Discard any site that did not have an MAE value for all 5 years (2011-2015). 
8. Average the remaining 207 sites’ MAE for each year, to produce one average MAE for each year 

(2011-2015) 

Results and Discussion 

From 2011 to 2015 an increase in average MAE for all systems was observed. This increase, when only 

taking the 2011 and 2015 into account, results in a 0.42% per year increase in average MAE for all 

systems. This rate is lower than the rough estimate of 1% per year, going by the typical 80% of capacity 
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after 20 years of use. Comparing the results to the measured degradation of solar panels of about 0.5% 

year, puts the result of 0.42% annually - well within a reasonable range. 

 

Figure 2: Relationship between average MAE for 207 sites selected from the Itron data that both have 5 
years of data and annual MAE less than 20% 

 

The annual increase in average MAE for all systems is interpreted as degradation. The increase is on the 

expected order of magnitude and in expected direction. The increase in MAE would be expected 

because the SolarAnywhere power simulations do not currently take degradation into account. This 

would lead to a small increase in simulation error over time as PV panels degrade. A linear line of best fit 

has a slope of +0.0034 which, when divided by the average power of the 207 systems, results in an 

annual degradation rate of 0.32%. 

CPR employed a second approach to identify degradation. CPR averaged the monthly maximum energy 

generation over 5 years for the same 207 filtered systems, resulting in 60 average monthly maximum 

values. A linear line of best fit trend line was then applied. The resulting slope was -0.0057 kWh. This is 

then divided to by the average system power output, of 1.053 kWh, for an annual degradation rate of 

0.54%. 
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Figure 3. Degradation via Monthly Max Values 

 

Both approaches result in similar results, and are consistent with industry studies reporting 0.5% 

degradation. Comparable results from both the satellite simulations relative to ground and using the 

ground information indicates consistency in the satellite data prior to applying degradation, and builds 

confidence in applying a modeled degradation approach to better predict the real world PV fleet output. 

Soiling 

Algorithm Summary 

The soiling algorithm allows SolarAnywhere power simulation to take soiling of PV panels into account. 

Not considering module soiling losses during PV simulations can lead to systemically high biases in PV 

power. The soiling algorithm is a function of time and precipitation. It assumes that soiling increases at a 

constant temporal rate and is reduced by precipitation events. There are 2 categories of precipitation 

events; major and minor events. Major precipitation events remove more soil from PV modules than 

minor events do. This soiling algorithm is custom-designed to work with daily precipitation data from 

the SNODAS (Snow Data Assimilation System) dataset, which is produced using a reanalysis with 

measured input to the base numerical model. Results and improvement are shown with and without the 

soiling model applied. 
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Results 

Results shown  are based on five years of hourly data from the 500-system Itron metered PV fleet. One 

year of BTM data from a major solar installers was also used to firm up the soiling rate calculations 

reported above.  

Table 1. Soiling Analysis Results 

Soiling Results 

Average MAE 
Unsoiled 

Average MAE 
Soiled 

Absolute % 
Difference 

6.62% 5.95% 0.67% 

 

Relative Percent 
Improvement 

10.12% 

 

 Yearly stats 2011 2012 2013 2014 2015 

MBE 1.03% 1.06% 3.40% 4.48% 4.43% 

MBE Soiled -1.19% -1.07% 0.50% 1.26% 2.47% 

MAE 6.00% 6.03% 6.76% 7.15% 7.15% 

MAE Soiled 5.91% 5.78% 5.79% 5.96% 6.32% 
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Figure 4. Soiling by Year 

 

 

System Availability 

Forecasts should account for the fact that not all systems are on-line at any given time. Some may be 

unavailable due to any number of factors, such as fuse/breaker trips, maintenance, and line power 

disturbances (which cause the units to trip offline). It is not possible to monitor every system in the fleet 

for availablility, so an overall factor could be used to represent average outage rates. The factor would 

then be applied to the fleet as a whole. 

Methodology 

To determine the availability of the fleet of CSI systems that Itron metered, the following steps were 

performed: 

1. Produce historical power simulations using SolarAnywhere 1 km V2.5 data in combination with 
PVsimulator and site specifications from PowerClerk. 

2. Obtain ground data from 500 well-maintained and monitored PV rooftop systems dispersed 
throughout the state of California. Data from each system covered approximately 5 years, 
ranging from 2010 to 2016. 

3. Align hourly ground power data with hourly SolarAnywhere historical power data for each site. 
Remove negative and non-zero nighttime ground values from the data.  

4. Discard time periods with missing ground data to eliminate them from availability calculations. 
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5. Treat periods of time when the systems reported zero and SolarAnywhere simulations were 
non-zero during daylight hours as times when the system was not available. 

6. Determine % availability for each system by dividing the number of periods when the system 
was available by the total periods not discarded , then take the average to get fleet availability.  

Results and Discussion 

Overall, systems had high availability. The average of all 476 systems was 98.27% availability. 319 

systems had 100% availability. 

 

Figure 5. Histogram of System Availability 

 

The figure shows the distribution of system availability in the fleet. The trend is highly biased towards 

near 100% availability. Below are additional statistics on the fleets availability. 

 

Table 2. Fleet Availability Statistics 
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One aspect of availability that was not considered is partial system availability. This can occur when a 

single module or an inverter in the system is not functioning properly. This would result in decreased 

power output from the system but would not result in the system be reported as unavailable, rather it 

might be interpreted as degradation or soiling. Since the system is not reporting 0s, this aspect of 

availability remains unmeasured. This partial availability would be seen in increased error between the 

power simulations, and actual ground data. This error would be difficult to systematically identify. 

Additionally, the relationship between system size and availability was investigated. The hypothesis was 

that it would be more likely that larger systems are carefuly monitored and maintained and would 

therefore have a higher availability. Figure 6 shows that relationship, however the sample size is small 

enough that this relationship may be obscured.  Finally, the available data skewed heavily towards single 

family residential systems. 

 

Figure 6. Availability as a function of system size 

  

Improving System Specifications by Inference 

With more than 5 GW of utility-scale PV capacity, forecasting output from large PV plants is becoming 

increasingly important to the California ISO.1 Unfortunately, detailed system specifications, which would 

                                                           
1 http://www.eia.gov/todayinenergy/detail.php?id=24852 
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improve the accuracy of modeled PV output, are difficult to obtain because most of these plants are 

privately owned. It should be possible, CPR hypothesized, to use historical weather data and measured 

system output to infer some or all of a PV system’s specifications automatically. The same approach 

might also be used to determine BTM system specifications. 

The goal for this part of the project was to develop a command-line tool that would compare measured 

PV production data with the simulated output from candidate systems with various tilt and azimuth 

combinations. It would then identify the candidate system whose output resulted in the best fit to the 

measured data. 

To simplify the problem somewhat, exact system location (latitude and longitude) is a required input. 

Also, the first version of the tool would only attempt to infer tilt, azimuth, and AC and DC system ratings 

for fixed (i.e. non-tracking) systems. Furthermore, to reduce the overall error in candidate system 

output, a baseline specification would be used to provide any known system details such as 

commissioning date, row count, row spacing, or solar obstructions.  

 

Methodology 

The overall approach used to infer PV system specifications from measured production data was as 

follows: 

1. Transform measured production time series data, as necessary, through compression and time 

shifting, to simplify comparison with modeled data. For example, 10-minute interval data is 

compressed to 30-minute interval data with time stamps at 15 minutes and 45 minutes after the 

hour, to match SolarAnywhere native weather data.  

2. Identify clear sky days for the system’s location. We selected days where the sum of the 

simulated system power from a horizontal system was >= 98% of the sum of the simulated clear 

sky power for that system. By examining only clear sky days, it becomes easier to identify 

inverter clipping and differences caused by a mismatch in system azimuth. 

3. Identify and track reporting errors in the measured data. Periods with reporting errors can be 

filtered out so as not to affect data comparison. 

a. Gaps in time stamps indicate missing data. 

b. Days where the maximum power is < 80% of previous day's maximum power can 

indicate a problem with the system (system outage) or a reporting error. 

c. Days with periods where clear sky power is zero and measured power > 3% of the max 

measured power (nighttime production) can indicate either a calibration error or a 

reporting error. 

d. Days with periods where measured power is zero and clear sky power > 5% of max clear 

sky power can indicate either a system outage or reporting error. 

4. Create a time-correlated list of AC ratings that defines the time periods to be modeled 

5. Simulate candidate systems, filter and compare modeled with measured production 
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a. Create a set of candidate systems with the same basic attributes as the baseline system, 

but with varying combinations of DC rating, tilt, and azimuth. 

b. For each candidate system, set the AC rating to the average of maximum daily measured 

power, then simulate production for the most recent rating time period 

c. Filter the measured and simulated production data and compare only clear sky days 

with no reporting errors. 

d. Select the candidate system for each rating period with the lowest relative mean 

absolute error (rMAE). If selected candidate systems differ in tilt and/or azimuth, then 

manually review candidate systems. Differences in DC and/or AC rating are expected 

between rating periods. 

Results 

Measured PV production data for the period from March 1, 2013 through March 31, 2014 was obtained 

for a number of utility-scale PV plants. Here, we’ll focus on three of the smaller plants, which we’ve 

designated Plant A, B, and C. CPR used publicly available information in an attempt to determine actual 

plant specifications manually. This information was supplemented by satellite imagery to determine the 

approximate number of rows of modules, number of inverters, and the array orientation. That 

information was used as the basis for a baseline system to be used as a template for each of the 

candidate systems whose simulated output would be compared to measured.  

The figures below show measured output for two of the PV plants studied. In Figure 7, based on the 

increases in maximum power output, it appears that the plant was undergoing construction from March 

through July 2013. Starting in August 2013, maximum power output remains flat, in spite of seasonal 

changes that would normally cause a drop in output. From this, we can deduce that the plant has a DC 

to AC ratio that’s high enough to allow its maximum power output to remain relatively constant 

throughout the year. 
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Figure 7. Measured PV Output, Example One 

 

The plant output shown in Figure 8 is also clipped due to a high DC to AC ratio. However, the ratio is not 

high enough to permit its maximum power output to remain constant throughout the year and we see a 

drop in maximum power output from October through January. Also worth noting is the lack of data in 

mid-January 2014. This could be either a reporting error or a plant outage. It’s impossible to know from 

the measured data alone. 

 

Figure 8. Measured PV Output, Example Two 

 

These two measured data examples illustrate some of the challenges in deriving system specifications 

from measured data: Changes in plant capacity, inverter clipping and lack of seasonal output changes 

due to high DC to AC ratios, missing data, and unknown PV plant operational status. 

When automatically inferring specifications, the tool correctly identified the gross capacity changes over 

time, but had difficulty during transitional periods where capacity changed on an almost daily basis. 

Once capacity had stabilized, the simulated output from the selected candidate system matched the 

measured output reasonably well (see Figure 9). 
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Figure 9. Measured and Simulated PV Output for Selected Days, Example One 

 

For the output shown in Figure 8, the AC capacity was slightly underestimated by the spec inference tool 

(see Figure 10) and the DC to AC ratio was overestimated (see Figure 11). 

 

Figure 10. AC Capacity Underestimated, Example Two 
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Figure 11. DC to AC ratio Overestimated, Example Two 

 

 

Table 3 summarizes the system specifications inferred for three sets of measured data. Information 

about these three systems was readily available online for these systems and in two cases, the baseline 

system yielded the lowest relative Mean Absolute Error. However, for Plant A, a much better candidate 

was identified and the error was reduced significantly. 



EPC-14-001 
 

 

20 
 

Table 3. Summary of Results for Three Systems 

 

Clean Power Research made significant progress in creating an automated tool for inferring PV system 

specifications using measured PV output data. Due to the complexities inherent in interpreting such 

data, we believe that additional accuracy is possible. For example, we did not account for solar 

obstructions, soiling, module degradation and other factors that decrease DC output. Consideration of 

such details were outside of the scope of this project, but we hope to continue development of this tool 

and the algorithms it implements. Preliminary versions of the tool,when implemented in software, could 

be applied to a system that improves the quality of reported PV system specifications in PowerClerk, by 

incorporating measured production data from PV systems within a utility or ISO territory. 

  

Plant A Plant B Plant C

Baseline

Rating (MW DC-PTC) 7.733                  19.668                       20.703                   

Rating (MW AC with Losses) 6.821                  17.347                       18.260                   

Tracking none (fixed) none (fixed) none (fixed)

Azimuth 180 180 180

Tilt 20 20 20

DC to AC Ratio 1.22                     0.98                             0.98                        

rMAE 23.0% 12.6% 12.8%

Selected Candidate

Rating (MW DC-PTC) 7.772                  19.668                       20.703                   

Rating (MW AC with Losses) 7.402                  17.347                       18.260                   

Tracking none (fixed) none (fixed) none (fixed)

Azimuth 180 180 180

Tilt 25 20 20

DC to AC Ratio 1.05 0.98                             0.98                        

rMAE 6.2% 12.6% 12.8%
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Other Forecast Improvements 

Inverter Power Curve 

Historically, when modeling PV system output, CPR has relied on the CEC weighted average efficiency 

rating to determine the output of an inverter relative to its DC input. This single number has been used 

in conjunction with an inverter power curve that is the same regardless of inverter make or model. In an 

effort to improve model accuracy, CPR has implemented two new ways to specify the inverter power 

curve. 

The first method allows the system specification to contain a list of power level/efficiency pairs. Using 

this method, you could, for example, specify the five power levels for which the CEC publishes inverter 

test results and the inverter efficiency at each level. The following XML code snippet shows an example 

of this method for specifying the inverter curve. 

 

Figure 12. Actual Inverter Power Curve versus Existing Default 

<EfficiencyRatings> 

<PowerLevelEfficiency PercentMaxAcPower="10" PercentEfficiency="93.4" /> 

<PowerLevelEfficiency PercentMaxAcPower="20" PercentEfficiency="96.9" /> 

<PowerLevelEfficiency PercentMaxAcPower="30" PercentEfficiency="97.2" /> 

<PowerLevelEfficiency PercentMaxAcPower="50" PercentEfficiency="97.5" /> 

<PowerLevelEfficiency PercentMaxAcPower="75" PercentEfficiency="97.4" /> 

<PowerLevelEfficiency PercentMaxAcPower="100" PercentEfficiency="97.2" /> 

</EfficiencyRatings> 

 

The second method we’ve implemented for specifying the inverter curve is to list a set of coefficients 

and exponents used in a formula to calculate AC power output for a given DC input. This method 

facilitates precise mathematical control over the shape of the output curve. 

To estimate the effect of a more accurate inverter curve on modeled output, we simulated output for a 

one-year period from two 5 kW systems that were identical in every way except for the inverter curve. 

Using the CPR default inverter curve yielded a maximum power output of 4.51 kW and a total of 9,042 

kWh for the year, while using an inverter specified by a list of power level/efficiency pairs yielded a 

maximum power output of 4.388 kW and a total of 8,786 kWh for the year. The relative Mean Absolute 

Error was 2.9%. 
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Error! Reference source not found. shows the results of using this approach versus the default inverter 

power curve used in CPR’s simulation model. 

 

Figure 13. Actual Inverter Power Curve versus Existing Default 

 

 

Ensemble Methods 

Additional work focused on improving the operational SolarAnywhere (SA) forecast models at both the 

short-term (hour ahead) and longer-term (day ahead) time horizons by using advanced ensemble 

methods leveraging forecasts from multiple sources. 

 

Representative PV System Fleets 

As the number of behind-the-meter (BTM) PV systems in California continues to grow, tracking the 

capacity and forecasting the output from those systems becomes more important to grid operators and 

balancing authorities. At the same time, while simulating and aggregating power output from individual 

systems provides greater accuracy, it also requires ever-increasing computing resources. However, 

system capacity from multiple systems in nearby locations with similar orientations can be combined to 

create representative systems, thereby reducing the number of distinct systems in a fleet to be 

simulated while retaining the diversity of locations and orientations that characterize the fleet’s power 

production. While these “Representative PV Fleets” introduce some level of error into the modeling 

process, the decrease in simulation time may prove to be a worthwhile trade-off. In addition, 
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representative fleet concepts can be applied in a top-down manner to extrapolate PV fleet production in 

areas where the detailed specification of individual resources is unknown. 

Within this project, Clean Power Research produced behind-the-meter (BTM) PV fleet power forecasts 

every 30 minutes for five load regions2 in the territories of California’s three investor-owned utilities 

(IOUs). These five load regions were identified by the California ISO. These forecasts are produced using 

satellite-derived irradiance values from SolarAnywhere® at 1 km x 1 km spatial resolution. System 

specifications such as latitude, longitude, tilt and azimuth, PV module and inverter efficiency ratings, 

obtained from IOUs, the California Energy Commission (CEC) and the California Solar Initiative (CSI), are 

used to model power output from approximately 186,000 systems. The power output from these 

individual systems is then aggregated to provide fleet power output. These systems, however, only 

represent about 43% of the total systems online. 

According to the California Public Utility Commission’s (CPUC) California Solar Statistics web site,3 more 

than 440,000 behind the meter PV systems are currently installed in California IOU territories and that 

number appears to be growing steadily, with more than 30% of the systems installed in 2015 (see Figure 

14). In addition to the increased computing horsepower required to model such large numbers of 

systems, specifications for the systems in the publicly available data are inexact or missing altogether. 

For example, locations are anonymized by providing only the systems’ zip code. Furthermore, system 

orientation (tilt and azimuth) is only available for 30% of the systems. Rather than creating generic 

systems and guessing at their orientation and exact location, we currently scale the modelled PV fleet 

power output on the assumption that the locations and system orientations of new systems will have a 

distribution similar to that of the current fleet captured in PowerClerk. In a way, this is one of the 

simplest methods for creating a bottom-up representative PV fleet. 

                                                           
2 These regions are San Diego Gas and Electric (SDG&E), Southern California Edision (SCE) Inland, Southern 
California Edision (SCE) Coastal, Pacific Gas & Electric (PG&E) Bay Area, and Pacific Gas & Electric (PG&E) Non-Bay 
Area 
3 https://www.californiasolarstatistics.ca.gov/  

https://www.californiasolarstatistics.ca.gov/
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Figure 14. Cumulative Installed BTM Systems in California 

 

Methodology 

To investigate methods for reducing the computational resources required for modelling large PV fleets 

and to better quantify the margin of error that might be introduced by generalizing the locations and 

orientation of systems in such fleets, we created various representative fleets using the CSI systems in 

the PG&E Non-Bay Area load region behind-the-meter fleet as a baseline for comparison. This baseline 

fleet, consisting of the 34,562 PV systems mapped in Figure 15, is spread across a large portion of 

California and has a wide variety of system orientations. The 30-minute power output from each of 

these systems was simulated for a one-year period from January 1, 2014 through December 31, 2014 

and the results were aggregated to produce the baseline fleet output every 30 minutes during the 

period. “Bottom-up” representative fleets were created by binning the capacity in a baseline fleet with 

known system specifications. The relative Mean Absolute Error (rMAE)4 for each of the representative 

(test) fleets was calculated compared to the output of this baseline (reference) fleet. 

 

                                                           
4 Thomas E. Hoff, J. K. (2012). REPORTING OF IRRADIANCE MODEL RELATIVE ERRORS. Proc. ASES Annual 
Conference. Raleigh, NC: American Solar Energy Society. 
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Figure 15. PG&E Non-Bay Area CSI Systems 

 

 

Geographic Bin Selection 

Site locations for the Representative fleets were selected using one of two methods. In the first method, 

a grid was created, by evenly dividing the rectangle bounding the systems in the baseline fleet. Six 

different spatial resolutions were used with this method. The first five spatial resolutions tested were 

1.6° latitude and longitude (approximately 160 x 160 kilometers), 0.8°, 0.4°, 0.2°, and 0.1° latitude and 

longitude (approximately 10 x 10 kilometers).  

Capacity for each system was mapped to the nearest location on the grid, then further binned by 

orientation (tilt, azimuth, and tracking). Table 1 shows the selected geographic bins and how they were 

combined with the orientation bins (described in the next section) to create the systems in each 

representative fleet.  The map in Figure 16 shows the locations for one representative fleet. Multiple 

systems were created at each location sized to represent the capacity of the actual systems in each 

orientation bin. 
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For example, in the fleet shown in Figure 16, among the 32 systems created at 37.942° latitude, -

120.593° longitude, there would be a south-facing system, with a 22.5° tilt, rated at 798.8 kW AC. 

 

Figure 16. Representative Fleet with system locations at 0.4° latitude/longitude spacing. 

 

 

For the sixth spatial resolution, the fleet we created had all capacity mapped to a single location, then 

binned by orientation. The location selected was the capacity-weighted geographic center of the 

baseline fleet. 

Note that SolarAnywhere Enhanced Resolution data has a spatial resolution of 1 km x 1 km, so the 

systems in the baseline fleet are already implicitly binned by location to the nearest 1 km, with no 

binning by orientation. This implicit binning has the effect of reducing the number of actual locations 

from 35,562 to 10,866. 

With the second method for representative fleet creation, we mapped each system’s capacity based on 

the zip code of the PV site and used the geographic center of the zip code as the location, then further 

binned the capacity based on the system’s orientation. System locations for these fleets are shown in 
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Figure 17. Finally, in a variation of the zip code based method, we mapped each system’s capacity based 

on the zip code, but created a single system with all of the zip code’s capacity, located it at the 

geographic center of the zip code, and used the baseline fleet’s capacity-weighted azimuth and tilt (17° 

and 175°, respectively) as that system’s orientation. 

 

Figure 17. Zip code based locations 

 

Orientation Bin Selection 

In addition to binning system capacity by location, when creating the representative fleets, the capacity 

of the actual systems was binned by tilt, azimuth and tracking to capture the diversity in system 

orientations at each location typical in large PV fleets. System orientation bins were based on 10° 

azimuth and 5° tilt increments (648 bins), 20°, azimuth and 10° tilt increments (162 bins), or 30° azimuth 

and 15° tilt increments (72 bins). Dual-axis tracking systems, where azimuth and tilt vary continuously 

throughout the day, constituted an additional bin. 
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For each location, the capacity for each array5 was assigned to the bin that most closely matched the 

azimuth and tilt of that array. For example, in the case where 30° azimuth and 15° tilt increment bins 

were used, capacity for arrays with azimuths that were +/- 15° from south (165° to 195°) with tilts 

between 22.5° and 37.5° would have been added to the 180° azimuth/30° tilt capacity bin. 

System Creation and Simulation 

Once the total capacity was determined for each location/orientation bin, systems were created with 

the appropriate capacity. Table 4 shows the number of systems in each of the 22 representative fleets 

created by combining spatial and orientation bins. 

 

Table 4. Number of systems in Representative Fleets by spatial resolution and orientation bin 

 Number of systems  

Spatial 
resolution 

Azimuth/Tilt Increments 

 
10°/5° 20°/10° 30°/15° 

Single 
Orientation 

Single 
Location 

362 130 73 - 

Zip Codes 15,305 8,824 6,302 601 

160 x 160 
km 

1,926 730 418 - 

80 x 80 
km 

4,020 1,707 1,025 - 

40 x 40 
km 

6,818 3,329 2,077 - 

20 x 20 
km 

11,119 6,091 4,022 - 

10 x 10 
km 

16,276 9,986 6,841 - 

                                                           
5 Capacity is analyzed at the array level rather than the system level in order to properly account for systems with 
multiple arrays. 



EPC-14-001 
 

 

29 
 

The maximum power rating for the inverter used for each system was calculated based on the capacity-

weighted DC to AC ratio for the baseline fleet of 1.027 as recorded for acutal systems. Inverter efficiency 

for each system was set to 96.2% - also based on the capacity-weighted inverter efficiency rating of the 

baseline fleet – and other DC losses were set to 11% - once again using the capacity-weighted DC losses 

of the baseline fleet. After creating the systems, power output for each system was simulated for every 

30-minute period from January 1, 2014 through December 31, 2014 and the results were aggregated to 

produce 30-minute interval fleet power. Those results were then compared to the output from the 

baseline fleet. 

Effect of Spatial Resolution and Orientation Bin Count on Relative Mean Absolute Error 

The amount of error introduced by using bottom-up representative PV fleets with regular geographic 

dispersion, rather than fleets consisting of individual systems with exact system specifications varied 

from 4.2% for the coarsest spatial resolution and smallest number of orientation bins, to 1.1% for the 

fleet with 10 km x 10 km spatial resolution and the largest number of orientation bins. As shown in 

Figure 18, the greatest impact on error was due to spatial resolution, rather than the number of 

orientations considered. However, further increases in spatial resolution would likely have 

proportionally less impact as we approach the native resolution of the satellite data. 
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Figure 18. Relative Mean Absolute Error for Representative Fleets 

 

 

The relative Mean Absolute Error for the representative fleets with a single location had significantly 

higher error than the other fleets, ranging from 10.1% to 10.7%. 

The representative fleet based on multiple orientations at each zip code fared reasonably well with 

rMAE ranging from 2.2% to 2.4%. However, the zip code based fleet that used a single orientation at 

each zip code had a much higher rMAE at 6.6%. While a multi-orientation zip code based fleet may be 

appropriate when exact system locations are unknown, performance is only slightly better than the 

representative fleets with the highest number of orientation bins and spatial resolution, and error is 

approximately double. 

The graphs in Figure 19 show the correlation between the 30-minute power values for selected 

representative fleets versus the baseline fleet. At the same spatial resolution, there was little difference 

between fleets with different numbers of orientation bins, so these were omitted. 
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Figure 19. Thirty-minute Power Value Correlation 
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Performance Benefits 

In general, the amount of time it takes to simulate a PV fleet scales linearly with the number of systems 

to be simulated with approximately an 8% additional reduction in time when there are many systems to 

be simulated at a single location. Although simulation times for the representative and baseline fleets 

were tracked, we feel that the actual times, which vary greatly depending on computer system load and 

data transmission speeds over the Internet, should not be considered when evaluating performance. 

Instead, based on the number of locations and systems, Table 5 shows the hypothetical reduction in 

time required to simulate these representative fleets relative to the baseline fleet. Even at the highest 

spatial resolution and the largest number of orientation bins evaluated, simulation times could be 

reduced by 63.5%. However, fewer orientation bins at the same high spatial resolution adds only 0.1% 

error, while yielding an 83.4% reduction in simulations time. 

 

Table 5. Estimated Reduction in Simulation Times for Representative Fleets Relative to Baseline Fleet 

 Azimuth/Tilt Increments 

 
10°/5° 20°/10° 30°/15° 

Single 
Orientation 

Single 
Location 

99.2% 99.7% 99.8%  

Zip 
Codes 

66.3% 80.0% 85.3% 98.6% 

160 x 
160 km 

95.9% 98.4% 99.1%  

80 x 80 
km 

91.4% 96.3% 97.7%  

40 x 40 
km 

85.5% 92.9% 95.5%  

20 x 20 
km 

75.7% 86.3% 90.7%  

10 x 10 
km 

63.5% 76.8% 83.4%  
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Examining Individual Days 

This study examines rMAE over an entire year. However, when forecasting PV fleet output, much 

shorter time scales are involved and it’s useful to look at individual days to get an idea of some of the 

shortcomings of certain types of representative fleets. 

In Figure 20 , for example, the June 21 output from the single location fleet drops dramatically in the 

afternoon due to clouds at that location, while the single-orientation zip code fleet shows the higher, 

narrower curve that’s typical when fleets do not include non-optimal orientations. Apart from their 

higher rMAE, these types of representative fleets should be avoided if daily production shape is 

important.  
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Figure 21, which shows fleet output for December 21, 2014 exhibits similar problems for these two fleets. 
Finally,  
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Figure 22 illustrates the importance of spatial resolution on partially cloudy days. 
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Figure 20. Baseline and Representative Fleet Output for June 21, 2014 
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Figure 21. Baseline and Representative Fleet Output for December 21, 2014 
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Figure 22. Baseline and Representative Fleet Output for February 26, 2014 
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Bottom-up representative PV fleets, created by generalizing the location and orientation of a set of 

individual systems with known specifications, can be used in modelling fleet output to reduce computing 

resource requirements by more than 80%, while introducing as little as 1.2% rMAE on an annual basis. 

By applying scaling factors to the known historical California BTM PV fleet, this was the the approach 

used for the trial of this project with CAISO. 

Zip code based representative fleets, which make use of known individual system orientation data can 

reduce computing resource requirements by more than 65%, while introducing as little as 2.2% rMAE on 

an annual basis. 

Although they can be simulated very quickly, representative fleets that make use of a single location 

exhibit more than 10% rMAE and have a fairly inaccurate power production curve on a daily basis. At 

6.6% rMAE, zip code fleets that use a single system orientation have less error than single location 

fleets, but typically exhibit a narrower daily production curve with a higher peak.  Applying this approach 

correctly as the size of the PV fleet continues to grow will need to account for loss of accuracy and 

ensure that any avoidable error isn’t introduced. 

Dynamic Regional Fleet Capacity Updates 

The equipment comprising BTM PV systems do not always remain in service on a continuous basis. 

Owners sometimes replace system components such as the inverter. They also may add or remove 

modules. Utility-scale systems are sometime built in phases, with capacity growing over time. In 

addition, outages – both planned and unplanned – can cause capacity to drop. As part of this project, 

CPR has implemented the ability to track changes in system capacity over time and use that information 

when simulating system output. 

California leads the nation in BTM PV installations – systems whose production, for the most part, is not 

tracked by utilities. In order to provide an accurate estimate of the power produced by these systems, 

it’s important to have detailed information about each system’s configuration - where it’s located, the 

date it was installed, the orientation of each array in the system, the models and quantities of modules 

and inverters that are installed, and the elevation of any solar obstructions, such as buildings and trees 

surrounding the system that are above the bottom edge of the panels. When combined with accurate 

weather data, whether historical or forecast, this system configuration information can be used with 

modeling software to produce a reasonably accurate estimate of the system’s production.6 

Beginning in 2007, detailed specifications for systems incentivized under the California Solar Initiative 

(CSI) were collected using PowerClerk, an online software service from Clean Power Research. Clean 

                                                           
6 https://www.nrel.gov/analysis/sam/pdfs/2008_sandia_ieee_pvsc.pdf 
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Power Research also collected specifications for non-CSI BTM systems incentivized under Self 

Generation Incentive Program (SGIP), the Emerging Renewables Program (ERP). By the end of 2014, CPR 

team had collected detailed specifications for more than 140,000 CSI systems and 43,000 non-CSI 

systems as shown in Figure 18. These system specifications, with a combined capacity over 2.1 GW, 

were used in the creation of five of the BTM fleets used in the CAISO forecast. 

 

Figure 23. Capacity of California’s BTM PV Fleet as tracked by Clean Power Research 

 

As incentives available through the California Solar Initiative began to run out, an increasing number of 

PV systems were being installed that were not tracked in PowerClerk. This was especially true in PG&E 

and SDG&E territories, and CPR began to look for ways to keep the capacity of its PV fleets up to date. 

Initially, CPR experimented with capacity data provided to CAISO by the IOUs. However, the poor quality 

(e.g. redundant and missing data)  of data prevented its use. Next, we obtained market research data 

from GTM Research. Although the data quality was better, reporting was only by quarter for the entire 

state, rather than by IOU or region.  

In July 2015, the CPUC began posting monthly editions of the NEM Currently Interconnected Data Set 

(CIDS) on the California Solar Statistics web site.7 Although this data set is useful for estimating total 

installed capacity, its usefulness as a source for detailed system specifications is limited due to 

anonymized locations (only zip code is provided) and missing data (tilt and azimuth) is available for only 

30% of the systems. 

                                                           
7 http://www.californiadgstats.ca.gov/downloads/ 
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Figure 24. California BTM Fleet Capacity 2008 to 2016 

 

By using capacity data from the NEM Interconnection Applications Data Set in conjunction with the 

detailed system specifications in FleetView, CPR was able to develop the time-dependent scaling factors 

that were applied to the historical simulations of the five CAISO behind-the-meter fleets whose output is 

used to train Itron’s load forecasting software. Furthermore, the scaling factors are now automatically 

recalculated when CIDS updates are published, then projected to future dates and applied to the CAISO 

BTM fleet forecasts. 

Determination of Fleet Historical Scaling Factors 

Since, the NEM Currently Interconnected Data Set contains only those systems that are thought to be 

currently online, and not those that have been decommissioned, we must look to the NEM 

Interconnection Applications Data Set to get a complete picture of historical capacity over time. Figure 

19 depicts the complete picture of historical capacity. 

Determination of Fleet Forecast Scaling Factors 

For forecasting, a linear formula for the scaling factor growth trend is derived for each CAISO zonal fleet, 

defined by this project, using CIDS and FleetView capacities for the most recent two months. Monthly 

scaling factors are then calculated dynamically using those formulas, based on the time elapsed since 

the beginning of the growth trend period and applied to the PV production forecast. Figure 25 shows a 

plot of the trend line for September through December 2015. Technically, coefficients only need to be 

updated if the growth rate of the scaling factors change. However, Clean Power Research monitors the 
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Currently Interconnected Data Set and automatically updates the coefficients whenever the CIDS is 

updated. 

 

Figure 25. Projected PG&E Non-Bay Area Scaling Factors 

 

Table 4 shows the capacity (MWCEC-AC) of each of the five CAISO BTM fleets from both the Currently 

Interconnected Data Set (blue) and FleetView (green) for the 6-month period from April to September 

2015. The yellow columns show the ratio of CIDS to FleetView capacity. 

 

Table 6. Installed PV Capacity (MWCEC-AC) Currently Installed Data Set vs FleetView 

 

CIDS FleetView Ratio CIDS FleetView Ratio CIDS FleetView Ratio CIDS FleetView Ratio CIDS FleetView Ratio CIDS FleetView Ratio

PG&E Bay Area 455.8       396.8 1.14868  465.2        396.9 1.17212     474.4        398.9 1.18924     482.4          400.0 1.20576     493.2          400.0 1.23282  502.8      400.0 1.25681  

PG&E Non-Bay Area 961.7       760.0 1.26540  992.2        761.1 1.30363     1,027.5     762.4 1.34770     1,056.7       765.0 1.38126     1,089.1      765.0 1.42372  1,123.9   765.0 1.46914  

SCE Coastal 477.6       460.7 1.03671  490.1        462.4 1.05993     501.8        462.7 1.08463     514.8          465.0 1.10707     524.8          465.0 1.12868  538.0      465.0 1.15714  

SCE Inland 459.3       437.8 1.04908  477.6        441.3 1.08224     494.2        442.1 1.11770     509.8          442.6 1.15185     524.4          442.6 1.18493  543.3      442.6 1.22761  

SDG&E 364.4       245.8 1.48251  374.3        250.6 1.49344     390.0        252.8 1.54251     402.0          254.0 1.58285     402.3          254.0 1.58395  413.0      254.0 1.62583  

Apr 2015 May 2015 Jun 2015 Jul 2015 Aug 2015 Sep 2015
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The scaling factors and consequent fleet ratings calculated for November 20, 2015 6:00 PM, for 

example, would be as follows: 

 

Fleet Scaling 
Factor 

Scaled 
CEC-AC 
Capacity 

(MW) 

Non-Metered: PG&E Bay Area 1.3002497 520.2 

Non-Metered: PG&E Non-Bay Area 1.5414869 1,179.2 

Non-Metered: SCE Coastal 1.1985151 557.3 

Non-Metered: SCE Inland 1.2929136 572.2 

Non-Metered: SDG&E 1.66500428 422.0 

Total    3,251.8 

 

Historical Behind-the-Meter PV Fleet Production Modeling 

One of the available inputs to the load forecasting model produced by Itron for the California ISO, is 

estimated PV production. For this project, the California ISO has identified five zonal fleets for which 

they require separate forecasts: PG&E Bay Area, PG&E Non-Bay Area, SCE Coastal, SCE Inland, and 

SDG&E. 

Using CSI data, CPR had previously created fleets of individual systems for each of the five zones. As 

more non-CSI systems began to come online, those fleets were no longer representative of the actual 

California PV fleet capacity. However, the large number of systems in these fleets did provide a 

representative sample of geographic distribution, diversity of orientations, and other system 

characteristics such as DC to AC sizing and inverter efficiency.8 Therefore, CPR simulated historical PV 

fleet production for each of those five fleets for the period from Jan. 1, 2010 through December 31, 

2015 using SolarAnywhere Enhanced Resolution data, which has a temporal resolution of 30 minutes. 

Interpolation was used to calculate 15-minute interval values. PV production was then scaled to match 

monthly capacity derived by combining the non-CSI portion of the NEM Currently Interconnected Data 

Set (CIDS) capacity as of June 30, 2015 with CSI capacity data obtained from PowerClerk. Scaling factors 

                                                           
8 This method assumes that geographic diversity of capacity and other system characteristics remained unchanged 
beyond the time at which systems incented under CSI began to comprise a smaller share of the total fleet. 



EPC-14-001 
 

 

44 
 

were linearly interpolated for the periods between each month. The CSV-format PV production data 

files for each fleet were made available to Itron via a File Transfer Protocol (FTP) server.  The charts 

below show the scaled versus unscaled PV production for each of the five CAISO fleets. As indicated in 

the charts, CPR’s estimate of non-CSI capacity before 2014 was higher than that reported in the CIDS. 

These results make the assumption that the CIDS is the best source for capacity available. 
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Robustness of the CAISO Forecast Delivery 

To improve availability and accuracy of the forecasts provided to CAISO during this project, Clean Power 

Research made the following operational changes to the manner in which forecasts are produced and 

delivered: 

1. Add distributed processing support so that larger fleets could be processed more quickly. 

2. Run forecasts on a scalable cloud-based platform that permits better monitoring and increases 

reliability. 

3. Automatically detect changes to the NEM Currently Interconnected Data Set and, trigger an 

automatic update of the scaling factors applied to the baseline fleet output. 

Real-time Data Feedback 

The use of feedback from real time production data have the potential to also improve forecasts. By 

using the current conditons and knowledge of the clear sky profile, it would be possible to advance the 

current observed clearness index along the clear sky profile to produce a “persistence forecast.” This is 

based on the assumption that the cloud conditions will not vary from the current conditions, or in other 

words that the current conditions will persist. However, obtaining real time data, fast enough for a  

forecast to be produced and dissemintated for decision making may prove difficult.  

The approach taken in this project was to focus on the use of production data from distributed rooftop 

systems. A large number of systems would needed, particularly if systems did not report data reliably, if 

they were out of service,  or if they were reporting bad data. All of these possibilities were belived to be 

a factor for distributed systems. 

Itron provided near real-time access to data from approximately 30 systems in the Bay Area. Some time 

delay in the readings was inevitable: the process required data transmission from the PV system itself to 

Itron’s database, followed by ingesting into the forecast system. A proof-of-concept system for 

retreiveing and ingesting the data was developed and demonstrated, and the process typically took 20 

minutes when working correctly.  

The process was demonstrated for a period of about one month. Real time data was being collected, 

evaluated, and used to modify the CPR solar forecast. During this period the modified forecasts were 

evaluated and small forecast improvements were observed in the modified forecast of PV system power 

for each of the 30 PV systems. This was expected since persistence, at least for short time scales, has 

been proven to add skill to the forecast. However, for forecasts beyond three hours no improvement in 

forecast skill was observed.  

After a month, the cellular carrier phased out support of the modems that were used to collect the data. 

This prevented a comprehensive evaluation. The use of data from these distributed systems is also 

costly, so a more complete evaluation would not only have to determine whether a forecast 

improvement were possible on a consistent basis, but also whether any such improvement would justify 
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ongoing maintenance costs at scale. It is not clear how many systems would be required to have a 

meaningful impact state-wide and if the meaningful impact is driven by a relative number of sites, the 

solution could become cost-prohibitive. 

 


