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Abstract  —  Solar resource uncertainty has the potential to 
significantly contribute to the financial risk of a PV project.  This 
uncertainty has been studied in depth for satellite-derived global 
horizontal irradiance (GHI), which are often used as long-term 
average dataset for project valuations.  Resource uncertainty, 
however, is not as well quantified in the plane of the array of the 
solar modules. This paper presents results that quantify the 
residual errors in plane of array irradiance (POAI) at locations 
where ground-measured GHI and POAI instruments are installed.  
Reductions in error to the modeled PAOI are observed when using 
satellite derived GHI that has been tuned with ground measured 
GHI for reduction in respective model errors.  

Index Terms — Plane of Array irradiance, SUNY satellite 
irradiance model, transposition models, PV power, 
SolarAnywhere 

I. INTRODUCTION 

Long term solar resource datasets are used in conjunction 
with simulation of PV power models to forecast solar 
photovoltaic (PV) power plant revenue generation in multi-
year time periods (often 20-year or 30-year projections). 
These resource datasets are typically provided hourly in three 
key components: GHI, Direct Normal Irradiance (DNI), and 
Diffuse Horizontal Irradiance (DHI).  DNI is defined as 
collimated solar irradiance that reaches the ground directly 
from the sun without being scattered and which is measured on 
a surface perpendicular to the sunbeam. DHI is the irradiance 
which has been scattered before reaching a horizontal surface. 
GHI is the sum of all incident irradiance on a horizontal surface.  
Using these three components it is possible to utilize a 
transposition model [1]–[2] to derive Plane of Array Irradiance 
(POAI) which is the sum of all incident resource on tilted 
surface. Plane of Array Irradiance is then used in conjunction 
with ambient temperature and wind speed as inputs to the 
aforementioned PV simulation models that forecast expected 
long-term solar PV power plant generation. 

Clean Power Research (CPR) is a provider of long term 
satellite derived solar resource data based on the SUNY 
satellite-to-solar irradiance model and in the commercial 

software platform, SolarAnywhere (SA). CPR also provides a 
service which reduces uncertainty in that long term dataset by 
tuning satellite derived GHI with concurrent and co-located 
ground measured GHI.  In this tuning method, the error between 
the ground measured GHI and the satellite derived GHI are 
compared, and corrections are made to the long term satellite 
derived solar resource GHI dataset. CPR has published 
literature on their satellite models [3] and on the method by 
which they correct their satellite models using ground measured 
GHI data [4]. The purpose of this paper is to quantify the 
magnitude of the reduction of error in POAI by applying the 
correction to the satellite model using ground based measured 
GHI data. Reduction in error is quantified hourly, daily, 
monthly, and annually. 

II. METHODOLOGY 

At five locations GHI and POA was measured using ground 
based thermopile sensors for time periods exceeding one year.  
For each of these locations the measured Gain is defined as the 
relative increase in irradiance received at the plane of the array 
with respect to the horizontal surface, and can be calculated as: 
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GHI was also modeled using satellite derived resource data 
from the SolarAnywhere Version 2.4 satellite model.   

The diffuse component (DHI) was derived using various 
methods for the purpose of comparison, including ground 
measurement (where available), Erbs model [5] based on 
ground GHI measurements, and modeled [6] using satellite 
GHI. A special case of the satellite modeled DHI, called 
“rebalanced DHI”, used the tuned satellite GHI data and the 
satellite modeled DNI to calculate DHI: 
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where Z is the angle between the solar disc and the zenith.  
GHI and DHI were used in conjunction with a transposition 

model to calculate modeled POA irradiance. We utilized both 
the Hay-Davies [1] transposition model as well as the Perez [2] 
transposition model. Finally, modeled POA and Gain were 
compared to measured POA and Gain and residual analysis was 
conducted. Table 1 provides a summary of the locations, 
durations, and equipment utilized to obtain the GHI and POA 
measurements. 

TABLE I 

LIST OF GROUND AND SATELLITE DATA 

Id Location Ground  
Data 

Time 
Period 

Ground  
Sensor 

Satellite 
Data 

Model 

Tilt 
(˚) 

Az 
(˚) 

BV2 Ontario, 
Canada 

GHI, 
POAI 

April 
2011 - 
May 2014 

Secondary 
Standard 

Pyranomete
r 

SA V 2.4 30 0 

BV3 New 
Jersey, 
United 
States 

GHI, 
POAI 

January 
2012 - 
June 2014 

EKO MS-
402 

SA V 2.4 25 0 

BV4 Arizona, 
United 
States 

GHI, 
POAI 

January 
2012 - 
December 
2014 

Secondary 
Standard 

Pyranomete
r 

SA V 2.4 25 10 

Sandia Albuquer-
que, New 
Mexico 

GHI, 
POAI, 
DHI 

January 
2011 – 
December 
2011 

Kipp & 
Zonen 

CMP 21 
(GHI) / 

Eppley PSP 
(POA) 

SA  V 2.4 35 0 

NREL Golden, 
Colorado 

GHI, 
POAI, 
DHI 

January 
2013 – 
December 
2013 

Kipp & 
Zonen  

CMP 22 
(GHI) / 

Eppley PSP 
(POA) 

SA V 2.4 40 0 

 
The 5 different sets of inputs used to model POA were  

a) ground measured GHI and DHI 
b) ground measured GHI and Erbs modeled DHI 
c) satellite derived GHI and DHI 
d) satellite corrected GHI and unbalanced DHI 
e) satellite corrected GHI and balanced DHI 

 
Once each input set was calculated, Hay-Davies transposition 

model was used to obtain POA values.. 

III. RESULTS AND DISCUSSION 

A. Satellite Tuning 
The method to tune satellite and ground data, as developed 

by Kankiewicz et al. [4], derives a correlation for the 
concurrent period of data collection and projects these 
correlation parameters across the entire history of satellite 
data.  The goal of this approach looks to leverage the site-

specificity of the ground data with the long-term measurement 
of the satellite data.  Specific correlation parameters, unique to 
each site location, are targeted at reducing the clear sky bias 
conditions separately from cloudy sky conditions, when the 
physically-based radiative transfer model and pseudo-
empirical Perez cloud model dominate, respectively.  The 
intended impact of the tuning method is a reduction of the 
mean bias difference (MBD) on GHI and reduction of 
Kolmogorov-Smirnov Interval (KSI) on GHI cumulative 
distribution functions for the concurrent time series data sets. 

For the five test sites, the impact of the satellite tuning on 
MBD and root mean squared difference (RMSD) between the 
satellite and the ground data is shown in Figure 1. In all cases, 
the tuning reduced the MBD but had less to no effect on the 
RMSD.  This is largely due to the efficacy of the tuning on 
MBD reduction from relative model biases, with the majority 
of RMSD resulting from the cloudy sky model and the tuning 
model’s lessened impact on those sky conditions. 

 
Figure 1: Mean bias difference (MBD) and root mean squared 
difference (RMSD) between satellite data and ground data. 

B. Annual POA modeling results 

Annual differences, modeled minus measured, for each of the 
five POA model methods are shown in Figure 2. As expected, 
models based on ground inputs generally perform the best. A 
notable exception is the MBD at site BV3, where it is suspected 
that the GHI measurement is biased high compared to the POA 
measurement. For the models which use satellite-based inputs, 
often the tuned GHI and rebalanced DHI was among the best 
performers, though performance is comparable among all 
methods at the Sandia and NREL locations.  

At site BV2, the ground measurement may be slightly biased 
high, and may lead to the tuned GHI, unbalanced DHI model 
over-predicting the POA irradiance compared to the unturned 
GHI. In this case, rebalancing the DHI appears to rectify this 
bias. 



 

The high RMSD values when using satellite inputs compared 
to ground inputs is notable. As seen in Figure 1, the satellite 
tuning does not have much impact on RMSDs. Thus, the large 
RMSDs from satellite data propagate through the POA models 
and are evident here in the POA predictions. 

 

 
Figure 2: Mean bias difference (MBD) and root mean squared 
difference (RMSD) for one year of modeled versus measured POA 
data. 
 

C. Monthly POA modeling results 

Results from monthly rMBD values of the ten POAI datasets 
can be seen in Figure 3 and Figure 4 for the Sandia and BV4 
sites.  

The Sandia location (Figure 3) shows a strong seasonal 
dependence: all models tend to overestimate in the winter 
months and underestimate in the summer months. While the 
ground-based POA estimates are always within +/-5%, the 
satellite-based POA estimates reach +10% bias in December. 
These satellite-based models only reach -2% bias in the summer 
months. RMSDs are generally consistent month-to-month for 
ground-based models but vary more for satellite-based models. 

The BV4 location (Figure 4), shows little season dependence 
for MBD, but does show some seasonal dependence of RMSD 
for the satellite-based models. For most months, there is a clear 
improvement in MBD when using tuned satellite GHI instead 
of untuned satellite GHI.  

 
Figure 3: Monthly mean bias difference (MBD) and root mean 
squared difference (RMSD) for month segments of modeled versus 
measured POA data. 

 

 

 
Figure 4: Monthly mean bias difference (MBD) and root mean 
squared difference (RMSD) for month segments of modeled versus 
measured POA data. 
 

D. Hay/Davies vs. Perez Transposition Models 

The POA modeled using Hay/Davies and Perez transposition 
models were compared for all five sites, and are shown for site 
BV4 in Figure 5. Differences between the Hay/Davies and 
Perez transposition models was often larger than the difference 
between using ground GHI versus tuned, balanced satellite GHI 
and DHI, showing that transposition model selection is also 
very important to POA modeling. 



 

The POA modeled using the Perez transposition model was 
consistently higher than POA modeled with the Hay/Davies 
model transposition model, consistent with [7]. Our results are 
also consistent with the finding in [7] that, when using modeled 
DHI as an input, the Hay/Davies transposition model appears 
to be less biased than the Perez transposition model. This is of 
particular importance when assessing the performance of 
operational projects, where ground measurements of DHI are 
often not available. 

 
Figure 5: Monthly mean bias difference (MBD) and root or month 
segments of modeled versus measured POA data, showing both the 
Hay/Davies (solid lines) and Perez (dashed lines) transposition 
models. 

E. Albedo Impact to POA modeling 

Ground albedo is another input that can affect POA 
estimates. Albedo is seldom measured and a default value of 
0.2 is usually assumed. It has been shown [7] that the effect on 
the model errors of changing the albedo value is larger for high 
tilts and high GHI scenarios like stations 5 and 6 in this study. 

Figure 6: As seen above, using values of 0.1 or 0.3 could tip the 
balance in favor of the Perez or Hay-Davies models respectively for 
a given station. 

 

IV. CONCLUSION 

   Seasonal biases may exist in POAI resource data and using 
ground based corrections does not always remove these biases.  
This is not true for all locations or all seasons. While GHI 
ground measurement tools have typically been preferred in 
project development due to their cost and reliability, the 
uncertainty on the modeled POAI dataset will more directly 
impact the PV project uncertainty. 

Tuning the long term satellite dataset has been shown to 
reduce uncertainty in GHI, and results herein now indicate that 
this approach provides a lower uncertainty POAI dataset as well.  
RMSD errors indicate an opportunity to improve satellite model 
uncertainty through better cloudy sky models, while the impact 
of albedo has been highlighted as a potential transposition 
model selection criterion.     
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