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ABSTRACT 

Utility planners and operators are concerned about how 
short-term PV system output changes may affect utility 
system stability. Short-term output changes are driven by 
changes in the clearness index. This paper analyzes the 
correlation coefficient of the change in the clearness index 
between two locations as a function of distance, time 
interval, and other parameters. The paper presents a 
method to estimate correlation coefficients that uses 
location-specific input parameters. The method is derived 
empirically and validated using 12 years of hourly 
satellite-derived data from SolarAnywhere® in three 
geographic regions in the United States (Southwest, 
Southern Great Plains, and Hawaii). Results from 70,000 
station pair combinations suggest that: (1) correlation 
coefficients decrease predictably with increasing distance; 
(2) correlation coefficients decrease at a similar rate when 
evaluated versus distance divided by the considered 
variability time interval; and (3) the accuracy of results is 
improved by including an implied cloud speed term. The 
approach has potential financial benefits to systems that 
are concerned about PV power output variability, ranging 
from individual distribution feeders to state-wide 
balancing regions. 

1. INTRODUCTION 

PV capacity is increasing on utility systems. As a result, 
utility planners and operators are growing more 
concerned about potential impacts of power supply 
variability caused by transient clouds. Utilities and control 
system operators need to adapt their planning, scheduling, 

and operating strategies to accommodate this variability 
while at the same time maintaining existing standards of 
reliability.   

It is impossible to effectively manage these systems, 
however, without a clear understanding of PV output 
variability or the methods to quantify it. Whether 
forecasting loads and scheduling capacity several hours 
ahead or planning for reserve resources years into the 
future, the industry needs to be able to quantify expected 
output variability for fleets of up to hundreds of thousands 
of PV systems spread across large geographical 
territories. Underestimating reserve requirements may 
result in a failure to meet reliability standards and an 
unstable power system. Overestimating reserve 
requirements may result in an unnecessary expenditure of 
capital and higher operating costs. 

The present objective is to develop analytical methods 
and tools to quantify PV fleet output variability. 
Variability in time intervals ranging from a few seconds 
to a few minutes is of primary interest since control area 
reserves are dispatched over these time intervals. For 
example, regulation reserves might be dispatched at an 
ISO every five seconds through a broadcast signal. 
Knowledge about PV fleet variability in five-second 
intervals could be used to determine the resources 
necessary to provide frequency regulation service in 
response to power fluctuations. 

Variability of a PV fleet is thus a measure of the 
magnitude of changes in its aggregate power output 
corresponding to the defined time interval and taken over 
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Hoff and Perez [3] developed a simplified model as a first 
step towards a general method to quantify the output 
variability resulting from an ensemble of equally-spaced, 
identical PV systems. They defined output variability to 
be the standard deviation of the change in output over 
some time interval (such as one minute) using data taken 
from some time period (such as one year). 

The simplified model covered the special case when the 
change in output between locations is uncorrelated (i.e., 
cloud impacts at one site are too distant to have 
predictable effects at another for the considered time 
scale), fleet capacity is equally distributed, and the 
variance at each location is the same.  Under these 
conditions, Hoff and Perez showed that fleet output 
variability equals the output variability at any one location 
divided by the square root of the number of locations. 
Mills and Wiser [4] have derived a similar result that 
relates variability to the square root of the number of 
systems when the locations are uncorrelated. 

2. CORRELATION VERSUS DISTANCE 

The critical factors that affect output variability are the 
clearness of the sky, sun position, and PV fleet orientation 
(i.e., dimensions, plant spacing, number of plants, etc.). 
To improve accuracy, Hoff and Perez introduced a 
parameter called the Dispersion Factor. The Dispersion 
Factor is a parameter that incorporates the layout of a fleet 
of PV systems, the time scales of concern, and the motion 
of cloud interferences over the PV fleet. Hoff and Perez 
demonstrated that relative output variability resulting 
from the deployment of multiple plants decreased quasi-
exponentially as a function of the generating resource’s 
Dispersion Factor. Their results demonstrated that relative 
output variability (1) decreases as the distance between 
sites increases; (2) decreases more slowly as the time 
interval increases; and (3) decreases more slowly as the 
cloud transit speed increases. 

Mills and Wiser analyzed measured one-minute insolation 
data over an extended period of time for 23 time-
synchronized sites in the Southern Great Plains network 
of the Atmospheric Radiation Measurement (ARM) 
program. Their results demonstrated that the correlation 
of the change in the global clear sky index (1) decreases 
as the distance between sites increases and (2) decreases 
more slowly as the time interval increases. 

Perez et. al. [6] analyzed the correlation between the 
variability observed at two neighboring sites as a function 
of their distance and of the considered variability time 

scale. The authors used 20-second to one-minute data to 
construct virtual networks at 24 US locations from the 
ARM program [7] and the SURFRAD Network and cloud 
speed derived from SolarAnywhere to calculate the 
station pair correlations for distances ranging from 10 
meters to 100 km and from variability time scales ranging 
from 20 seconds to 15 minutes. Their results 
demonstrated that the correlation of the change in global 
clear sky index (1) decreases as the distance between sites 
increases and (2) decreases more slowly as the time 
interval increases. 

The consistent conclusions of these studies are that 
correlation: (1) decreases as the distance between sites 
increases and (2) decreases more slowly as the time 
interval increases. Hoff and Perez add that the correlation 
decreases more slowly as the speed of the clouds 
increases. 

3. OBJECTIVE 

Utility planners clearly require a tool that can reliably 
quantify the maximum output variability of PV fleets 
using a manageable amount of data and analysis. The 
methods referred to above would potentially meet this 
requirement if the changes in output between locations 
were uncorrelated (i.e., correlation coefficient is zero). In 
actual fleets, however, PV systems will generally have 
some degree of correlation, so any planning tool will have 
to incorporate correlation effects in calculating actual 
fleet variability. 

This paper takes a step towards a general method by 
analyzing the correlation coefficient of the change in 
clearness index between two locations as a function of 
distance, time interval, and other parameters. It uses 
hourly global horizontal insolation data from 
SolarAnywhere to calculate correlation coefficients for 
70,000 station pair combinations across three separate 
geographic regions in the United States (Southwest, 
Southern Great Plains, and Hawaii). The correlation 
coefficients taken from these combinations are then 
compared to a method that could prove useful when 
integrated into utility planning and operations tool. 
Further details are presented in [5]. 

4. APPROACH 

Hoff and Perez defined PV fleet variability as the 
standard deviation of its power output changes using a 
selected sampling time interval (e.g., such as one minute 
or one hour) and analysis period (such as one year), as 



 
 
expressed relative to the fleet capacity. To simplify the 
work, they formulated it in terms of the change in 
insolation rather than the change in PV power.  

As stated earlier, sky clearness and sun position drive the 
changes in short-term output for individual PV systems. 
Mills and Wiser [4] and Perez, et. al. [8] subsequently 
isolated the random component of output change and 
examined changes attributable only to changes in global 
clear sky (or clearness) index. The global clearness index 
equals the measured global horizontal insolation divided 
by the clear sky insolation. This paper continues in the 
direction of Mills and Wiser and Perez, et. al. and focuses 
on changes in the global clearness index.  

The global clearness index at a specific point in time is 
typically referred to as Kt*. It equals the measured global 
horizontal insolation (GHI) divided by the clear-sky 
insolation. This paper refers to the change in the index 
between two points in time as ΔKt*. Since the change 
occurs over some specified time interval, Δt, at some 
specific location n, the variable is fully qualified as 
Δݐܭ∗௧,௧

 . This only represents one pair of points in time. 

A set of values is identified by convention by bolding the 
variable. Thus, ઢ࢚ࡷ∗ઢ࢚

  is the set of changes in the 
clearness indices at a specific location using a specific 
time interval over a specific time period.  

Correlation and dependence in statistics are any of a 
broad class of statistical relationships between two or 
more random variables or observed data values. Let 

ઢ࢚ࡷ∗ઢ࢚
  and ઢ࢚ࡷ∗ઢ࢚

  represent sets of observed data values 
for the change in the clearness index at location 1 and 
location2. Pearson’s product-moment correlation 
coefficient (typically referred to simply as the correlation 
coefficient) is calculated for each pair of locations.  

The analysis is performed as follows: 

1. Select a geographic region for analysis 
2. Select a location for the first part of the pair 
3. Select a location for the second part of the pair 
4. Select a time interval for the analysis 
5. Select a clear sky irradiance level bin 
6. Obtain detailed insolation data 
7. Calculate the change in the clearness index 
8. Calculate the correlation coefficient  
9. Repeat the calculation for all sets of location 

pairs, time intervals, and clear sky irradiance 
bins. 

The focus of this paper is on trying to determine if 
patterns existing that help to better quantify correlation 
coefficients. As part of the objective, a method is tested 
that produces the desired output parameter of the 
correlation coefficient of the change in the clearness index 
between two separate locations. The inputs into this 
method include the distance between the two locations, 
time interval, and location-specific parameters based on 
empirical weather data, in particular, cloud speed. 

5. RESULTS 

Three separate geographic regions in the United States 
were selected for analysis: Southwest, Southern Great 
Plains, and Hawaii (see Table 1). The first location was 
selected using a grid size of 2.0°, 1.0°, or 0.5° for the 
Southwest, Southern Great Plains, and Hawaii, 
correspondingly. The second location was selected 
between 0.1° and 2.9° (about 10 to 300 km) from the first 
location (other map coordinates were available but the 
selected points provided sufficient data for the analysis). 
Hourly insolation data was obtained for each of the two 
locations covering the period January 1, 1998 through 
September 30, 2010 from SolarAnywhere [2]. The 
analysis was then performed as described above for time 
intervals of 1, 2, 3, and 4 hours and for 10 separate clear 
sky irradiance bins. This analysis resulted in more than 
70,000 correlation coefficients. 

Figure 2 presents a randomly selected set of correlation 
coefficients for the Southwest.  The figures in the 
columns summarize the results for each time interval and 
the figures in the rows present the measured correlation 
coefficients versus several alternative candidate sets of 
variables. The first column summarizes results for a time 
interval of 1 hour. The second, third, and fourth columns 
plot the same results using time intervals of 2, 3, and 4 
hours. Results in the top row present correlation 
coefficients versus the distance between the two locations. 
Results in the middle row present correlation coefficients 
versus distance divided by time interval. Results in the 
bottom row present correlation coefficients versus 
distance divided by time interval multiplied by relative 
speed; this term is related to the Dispersion Factor 
introduced by Hoff and Perez [3]. The dashed line in the 
bottom figures represents the results of a generalized 
method, proposed in this paper for use in future tools, that 
will be validated in the present analysis.  Results are 
calculated using parameters obtained from 
SolarAnywhere.  
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