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ABSTRACT

Utility planners and operators are concerned about how
short-term PV system output changes may affect utility
system stability. Short-term output changes are driven by
changes in the clearness index. This paper analyzes the
correlation coefficient of the change in the clearness index
between two locations as a function of distance, time
interval, and other parameters. The paper presents a
method to estimate correlation coefficients that uses
location-specific input parameters. The method is derived
empirically and validated using 12 years of hourly
satellite-derived data from SolarAnywhere® in three
geographic regions in the United States (Southwest,
Southern Great Plains, and Hawaii). Results from 70,000
station pair combinations suggest that: (1) correlation
coefficients decrease predictably with increasing distance;
(2) correlation coefficients decrease at a similar rate when
evaluated versus distance divided by the considered
variability time interval; and (3) the accuracy of results is
improved by including an implied cloud speed term. The
approach has potential financial benefits to systems that
are concerned about PV power output variability, ranging
from individual distribution feeders to state-wide
balancing regions.

1. INTRODUCTION

PV capacity is increasing on utility systems. As a result,
utility planners and operators are growing more
concerned about potential impacts of power supply
variability caused by transient clouds. Ultilities and control
system operators need to adapt their planning, scheduling,
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and operating strategies to accommodate this variability
while at the same time maintaining existing standards of
reliability.

It is impossible to effectively manage these systems,
however, without a clear understanding of PV output
variability or the methods to quantify it. Whether
forecasting loads and scheduling capacity several hours
ahead or planning for reserve resources years into the
future, the industry needs to be able to quantify expected
output variability for fleets of up to hundreds of thousands
of PV systems spread across large geographical
territories. Underestimating reserve requirements may
result in a failure to meet reliability standards and an
unstable power system. Overestimating reserve
requirements may result in an unnecessary expenditure of
capital and higher operating costs.

The present objective is to develop analytical methods
and tools to quantify PV fleet output variability.
Variability in time intervals ranging from a few seconds
to a few minutes is of primary interest since control area
reserves are dispatched over these time intervals. For
example, regulation reserves might be dispatched at an
ISO every five seconds through a broadcast signal.
Knowledge about PV fleet variability in five-second
intervals could be used to determine the resources
necessary to provide frequency regulation service in
response to power fluctuations.

Variability of a PV fleet is thus a measure of the
magnitude of changes in its aggregate power output
corresponding to the defined time interval and taken over



a representative study period. Note that it is the change in
output, rather than the output itself, that is desired. Also
note that, for each time interval the change in output may
vary in both magnitude and sign (positive and negative).
The statistical metric that is employed to quantify
variability is the standard deviation of the change in fleet
power output.

It is helpful to graphically illustrate what is meant by
output variability. The left side of Figure 1 presents
measured 10-second irradiance data (PV power output is
almost directly proportional to irradiance) and the right
side of the figure presents the change in irradiance using a
10-second time interval for a network of 25 weather
monitoring stations in a 400-meter by 400-meter grid
located at Cordelia Junction, CA on November 7, 2010
[1]. The light gray lines correspond to irradiance and
variability for a single location and the dark red lines
correspond to average irradiance distributed across 25
locations. Results suggest that spreading capacity across
25 locations rather than concentrating it at a single
location reduces variability by more than 70 percent in
this particular instance.

A “fleet computation” approach can be taken to calculate
output variability for a fleet of PV systems as follows:
identify the PV systems that constitute the fleet to be
studied; select the time interval and time period of
concern (e.g., one-minute changes evaluated over a one-
year period); obtain time-synchronized solar irradiance
data for each location where a PV system is to be sited;
simulate output for each PV system using standard
modeling tools; sum the output from each individual

system to obtain the combined fleet output; calculate the
change in fleet output for each time interval; and finally
calculate the resulting statistical output variability from
the stream of values.

This “fleet computation” approach, while technically
valid, is difficult to implement in practice for several
reasons. First, insolation data is not available in sufficient
resolution (either time resolution or geographical
resolution). For example, SolarAnywhere [2], which
provides operational real-time insolation data for the
continental U.S. and Hawaii, is currently based on a 10
km x 10 km grid and a one-hour time interval. It has a
practical real-time limit of one-half hour and 1 km based
on current satellite technology. Fleet computation could
not be performed for, say, systems spaced 0.5 km apart
with a four-minute time interval. Second, PV variability
determined using the fleet computation approach is only
applicable to studies having a matching time interval of
interest and a fixed fleet selection. The study would have
to be re-commissioned whenever additional PV systems
came on-line. Finally, calculations are highly computation
intensive, and thus are not suitable for real-time
operations.

A more viable approach is to streamline the calculations
through the use of a general-purpose PV output variability
methodology. The method needs to quantify short-term
fleet power output variability using the observations that
sky clearness and sun position drive the changes in the
short-term output for individual PV systems and that
physical parameters (i.e., dimensions, plant spacing,
number of plants, etc.) determine overall fleet variability.

Figure 1. Twenty-five location network reduces 10-second variability by more than 70 percent in a 400 meter x 400 meter
grid at Cordelia Junction, CA on November 7, 2010.
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Hoff and Perez [3] developed a simplified model as a first
step towards a general method to quantify the output
variability resulting from an ensemble of equally-spaced,
identical PV systems. They defined output variability to
be the standard deviation of the change in output over
some time interval (such as one minute) using data taken
from some time period (such as one year).

The simplified model covered the special case when the
change in output between locations is uncorrelated (i.e.,
cloud impacts at one site are too distant to have
predictable effects at another for the considered time
scale), fleet capacity is equally distributed, and the
variance at each location is the same. Under these
conditions, Hoff and Perez showed that fleet output
variability equals the output variability at any one location
divided by the square root of the number of locations.
Mills and Wiser [4] have derived a similar result that
relates variability to the square root of the number of
systems when the locations are uncorrelated.

2. CORRELATION VERSUS DISTANCE

The critical factors that affect output variability are the
clearness of the sky, sun position, and PV fleet orientation
(i.e., dimensions, plant spacing, number of plants, etc.).
To improve accuracy, Hoff and Perez introduced a
parameter called the Dispersion Factor. The Dispersion
Factor is a parameter that incorporates the layout of a fleet
of PV systems, the time scales of concern, and the motion
of cloud interferences over the PV fleet. Hoff and Perez
demonstrated that relative output variability resulting
from the deployment of multiple plants decreased quasi-
exponentially as a function of the generating resource’s
Dispersion Factor. Their results demonstrated that relative
output variability (1) decreases as the distance between
sites increases; (2) decreases more slowly as the time
interval increases; and (3) decreases more slowly as the
cloud transit speed increases.

Mills and Wiser analyzed measured one-minute insolation
data over an extended period of time for 23 time-
synchronized sites in the Southern Great Plains network
of the Atmospheric Radiation Measurement (ARM)
program. Their results demonstrated that the correlation
of the change in the global clear sky index (1) decreases
as the distance between sites increases and (2) decreases
more slowly as the time interval increases.

Perez et. al. [6] analyzed the correlation between the
variability observed at two neighboring sites as a function
of their distance and of the considered variability time

scale. The authors used 20-second to one-minute data to
construct virtual networks at 24 US locations from the
ARM program [7] and the SURFRAD Network and cloud
speed derived from SolarAnywhere to calculate the
station pair correlations for distances ranging from 10
meters to 100 km and from variability time scales ranging
from 20 seconds to 15 minutes. Their results
demonstrated that the correlation of the change in global
clear sky index (1) decreases as the distance between sites
increases and (2) decreases more slowly as the time
interval increases.

The consistent conclusions of these studies are that
correlation: (1) decreases as the distance between sites
increases and (2) decreases more slowly as the time
interval increases. Hoff and Perez add that the correlation
decreases more slowly as the speed of the clouds
increases.

3. OBJECTIVE

Utility planners clearly require a tool that can reliably
quantify the maximum output variability of PV fleets
using a manageable amount of data and analysis. The
methods referred to above would potentially meet this
requirement if the changes in output between locations
were uncorrelated (i.e., correlation coefficient is zero). In
actual fleets, however, PV systems will generally have
some degree of correlation, so any planning tool will have
to incorporate correlation effects in calculating actual
fleet variability.

This paper takes a step towards a general method by
analyzing the correlation coefficient of the change in
clearness index between two locations as a function of
distance, time interval, and other parameters. It uses
hourly global horizontal insolation data from
SolarAnywhere to calculate correlation coefficients for
70,000 station pair combinations across three separate
geographic regions in the United States (Southwest,
Southern Great Plains, and Hawaii). The correlation
coefficients taken from these combinations are then
compared to a method that could prove useful when
integrated into utility planning and operations tool.
Further details are presented in [5].

4. APPROACH

Hoff and Perez defined PV fleet variability as the
standard deviation of its power output changes using a
selected sampling time interval (e.g., such as one minute
or one hour) and analysis period (such as one year), as



expressed relative to the fleet capacity. To simplify the
work, they formulated it in terms of the change in
insolation rather than the change in PV power.

As stated earlier, sky clearness and sun position drive the
changes in short-term output for individual PV systems.
Mills and Wiser [4] and Perez, et. al. [8] subsequently
isolated the random component of output change and
examined changes attributable only to changes in global
clear sky (or clearness) index. The global clearness index
equals the measured global horizontal insolation divided
by the clear sky insolation. This paper continues in the
direction of Mills and Wiser and Perez, et. al. and focuses
on changes in the global clearness index.

The global clearness index at a specific point in time is
typically referred to as Kt*. It equals the measured global
horizontal insolation (GHI) divided by the clear-sky
insolation. This paper refers to the change in the index
between two points in time as AKt*. Since the change
occurs over some specified time interval, At, at some
specific location n, the variable is fully qualified as

AKt*} . This only represents one pair of points in time.
A set of values is identified by convention by bolding the
variable. Thus, AKt*}, is the set of changes in the
clearness indices at a specific location using a specific
time interval over a specific time period.

Correlation and dependence in statistics are any of a
broad class of statistical relationships between two or
more random variables or observed data values. Let
AKt*}, and AKt*3, represent sets of observed data values
for the change in the clearness index at location 1 and
location2. Pearson’s product-moment correlation
coefficient (typically referred to simply as the correlation
coefficient) is calculated for each pair of locations.

The analysis is performed as follows:

Select a geographic region for analysis

Select a location for the first part of the pair
Select a location for the second part of the pair
Select a time interval for the analysis

Select a clear sky irradiance level bin

Obtain detailed insolation data

Calculate the change in the clearness index
Calculate the correlation coefficient
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Repeat the calculation for all sets of location
pairs, time intervals, and clear sky irradiance
bins.

The focus of this paper is on trying to determine if
patterns existing that help to better quantify correlation
coefficients. As part of the objective, a method is tested
that produces the desired output parameter of the
correlation coefficient of the change in the clearness index
between two separate locations. The inputs into this
method include the distance between the two locations,
time interval, and location-specific parameters based on
empirical weather data, in particular, cloud speed.

5. RESULTS

Three separate geographic regions in the United States
were selected for analysis: Southwest, Southern Great
Plains, and Hawaii (see Table 1). The first location was
selected using a grid size of 2.0°, 1.0°, or 0.5° for the
Southwest, Southern Great Plains, and Hawaii,
correspondingly. The second location was selected
between 0.1° and 2.9° (about 10 to 300 km) from the first
location (other map coordinates were available but the
selected points provided sufficient data for the analysis).
Hourly insolation data was obtained for each of the two
locations covering the period January 1, 1998 through
September 30, 2010 from SolarAnywhere [2]. The
analysis was then performed as described above for time
intervals of 1, 2, 3, and 4 hours and for 10 separate clear
sky irradiance bins. This analysis resulted in more than
70,000 correlation coefficients.

Figure 2 presents a randomly selected set of correlation
coefficients for the Southwest. The figures in the
columns summarize the results for each time interval and
the figures in the rows present the measured correlation
coefficients versus several alternative candidate sets of
variables. The first column summarizes results for a time
interval of 1 hour. The second, third, and fourth columns
plot the same results using time intervals of 2, 3, and 4
hours. Results in the top row present correlation
coefficients versus the distance between the two locations.
Results in the middle row present correlation coefficients
versus distance divided by time interval. Results in the
bottom row present correlation coefficients versus
distance divided by time interval multiplied by relative
speed; this term is related to the Dispersion Factor
introduced by Hoff and Perez [3]. The dashed line in the
bottom figures represents the results of a generalized
method, proposed in this paper for use in future tools, that
will be validated in the present analysis. Results are
calculated using parameters obtained from
SolarAnywhere.



Figure 3 and Figure 4 present comparative results for the
Great Plains and Hawaii. The patterns presented in the
figures are similar across all time intervals in the three
geographic locations.

6. CONCLUSIONS

The analysis provides several key findings. First,
consistent with previous studies, the correlation
coefficients decrease with increasing distance. Second,

also consistent with previous studies, this decrease occurs
more slowly with longer time intervals. An alternative
way of viewing this result is that correlation coefficients
decrease at a similar rate when plotted versus distance
divided by time interval. Third, the scatter in results is
further decreased when a relative speed is introduced for
the first location in the pair of locations. Finally, the
generalized method (shown by the dashed black lines) fits
the empirical data quite well when calibrated using the
location-specific derived input parameters.

Table 1. Summary of input data.

Region Southwest Southern Great Plains Hawaii
Location #1 Latitude: 32°to 42° Latitude: 35°to 38° Latitude: 19°to  20°
Longitude: -125° to -109° Longitude: -99° to -96° Longitude: -156° to -155°
Grid Size: 2.0° Grid Size: 1.0° Grid Size:  0.5°
Location #2 0.1°,0.3°, ..., 1.9° from #1 0.1°,0.3°, ..., 2.9° from #1 0.1°,0.2°, ..., 1.0° from #1
Time Intervals | 1, 2, 3, and 4 hours 1,2, 3, and 4 hours 1, 2, 3, and 4 hours
Clear Sky 10 irradiance bins in intervals of | 10 irradiance bins in 10 irradiance bins in
Irradiance 0.1 kW/m? increments of 0.1 kW/m? increments of 0.1 kW/m?
Figure 2. Correlation coefficients presented by time interval for Southwest.
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Figure 3. Correlation coefficients presented by time interval for Great Plains.
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Figure 4. Correlation coefficients presented by time interval for Hawaii.
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