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Abstract

An investment’s price is the state-price weighted sum of its future payoffs when
markets are complete. This is a well established fact in the financial economics field. The
investment valuation problem in incomplete markets, however, has attracted the interest of
several additional fields, including decision analysis and real options, and has led to a
variety of valuation approaches. The approaches differ in their treatment of the investor’s
existing portfolio, market opportunities to hedge risks, the ability to re-optimize after
adding a new investment to one’s portfolio, and the investment’s divisibility.

This research develops a single valuation approach that produces results consistent with
financial economics when markets are complete but is also applicable when the investment
is not divisible and the decision maker can only borrow and lend at the risk-free discount
rate (markets are incomplete). Results suggest that, given a time- and state-separable
utility function, a decision maker’s buying price for an investment is approximately equal
to the state-price weighted sum of its future payoffs (see Theorems 2.2 and 3.2); results
are exact when markets are complete or the utility function is exponential. State prices in
incomplete markets have a similar definition as state prices in complete markets in that
they are approximately marginal utility based prices. The approach may have
computational advantages because the prices can be estimated without solvingity full ut
maximization problem for each new investment that is evaluated.

The most important application of this work will be in the evaluation of projects that
are indivisible and have managerial flexibility in markets that are incomplete (i.e., an
important category of real option problems). A comprehensive example of an electrical
utility’s use of distributed generation to provide system capacity (rather than the typical
approach of upgrading transmission and distributioitities) illustrates how to apply the
method. The example shows that the correlation between a new project’s payoffs and the

existing portfolio has a large effect on the investment decision.
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1. Introduction

1.1 Background

Identifying better ways to evaluate investments is an activity in which there is
widespread interest. It is of interest to individuals with very limited resources as well as to
governments with vast financial resources. Individuals face investment problems when
purchasing a washing machine, when deciding whether to invest in a college education,
when investing in the stock market, and when buying a home. Firms face investment
problems when designing their research and development programs, when introducing
new products, and when making bet-the-company type decisions. Governments face
investment problems when designing welfare programs, when supporting the development
of new technologies, and when deciding whether or not to enter into an international
confrontation.

This interest in investment problems has attracted the attention of several fields of
research and has led to a variety of valuation theories and approaches. Two of the most
important fields are financial economics and decision analysis/decision sciences. A third
that is growing in importance is the field of real options.

One issue that tends to distinguish these three fields is their focus. As illustrated in
Figure 1.1, financial economics focuses on the market. It provides a market-based
valuation of an investment by examining all investment opportunities that are available in
the market. Decision analysis focuses on the decision maker. Little thought is typically
given to the market and how it affects the decision. Real options focuses on the
investment. Some applications of real options are concerned with how the investment
interacts with the market while others are only concerned about the decision maker. In
some ways, it can be viewed as a field that is in between financial economics and decision

analysis.
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Figure 1-1. Focus of various fields when evaluating investments.

This chapter provides a brief discussion of these fields with a focus on some of the

issues that will apply to the rest of this work.

1.2 Financial Economics

The existence of state prices is the unifying principle in asset pricing in financial
markets. If state prices exist, there is one price for each state of the world at each date.
State prices take into account uncertainty and discounting over time. A state price is the
current price of a security that pays off $1 if a particular state occurs in the future and
pays off $0 in all other states. The price of any security is determined according to these
state prices and the security’s cash flows. Security price is the state-price weighted sum of
its future cash flows. That is, one multiplies the state price times the security’s cash flow
for each state and for each date and then sums the results.

Determination of state prices is based on the constraints placed on asset prices. The
three basic constraints on asset prices are the absence of arbitrage (i.e., there is no way to
lock in a risk-free profit by simultaneously entering into two or more market transactions),
market equilibrium, and single-agent optimality. State prices exist when any of these three
constraints is satisfied. That is, the absence of arbitrage, market equilibrium, and single-
agent optimality each imply the existence of a set of state prices and complete markets
(Duffie 1992). The following subsections describe how to determine state prices using

these three constraints.



1.2.1 Valuation by Arbitrage

Valuation by arbitrage determines the prices of derivative securities based on the prices
of other securities that are traded in the market. (A derivative security is a security whose
value depends on the values of other more basic underlying variables). The arbitrage
approach takes the price processes of a set of market-traded securities as given,
demonstrates that they are free from arbitrage, and then uses this arbitrage-free set of
prices to price the derivative security.

The best known option pricing formulas based on arbitrage are those developed by
Black and Scholes (1973) and the binomial option pricing method developed by Cox,
Ross, and Rubinstein (1979). The Black-Scholes approach prices a stock option by
creating a dynamically hedged portfolio that consists of the underlying stock and a risk-
free asset. The portfolio is selected so that its cash flow is identical to the option’s cash
flow in every state. Securities with identical cash flows have the same price to avoid
arbitrage. Thus, the option’s price is identical to the portfolio’s price.

The binomial option pricing approach (1) generates the distribution of the future stock
price based only on the risk-free rate and the stock’s volatility (the risk premium of the
stock is irrelevant); (2) calculates the expected value of the stock price minus the exercise
price in the range where this value is positive using a set of “risk-neutral” probabilities;
and (3) discounts the result at the risk-free rate. The state prices are identical to the “risk-
neutral” probabilities times the risk-free discount rate.

Harrison and Kreps (1979) demonstrate that martingales provide a direct way to price
derivative assets based on these pridés. a martingale if the expected valueYoht any

future time given the current available information equals the current vale &ore

precisely, a proces¥ :{Y( 9; t= O,J,...,T} is a martingale adapted to an information
structure F = {F;t=0,1...T} if E[Y(9|F]= Y} for all s>t where E[[F] is the

expectation conditional orf,. The probabilities in the expectation that makea

martingale are the state prices normalized by the risk-free discount rate.
The necessary and sufficient condition for price processes not to admit arbitrage

opportunities is that they are related to martingales through a normalization and change of



probability (Duffie 1992 and Huang and Litzenberger 1988). What is the normalization
that makes a contingent claim (e.g., an option on a stock) into a martingale? Several
authors have shown that any contingent claim on an asset can be priced in a world with
systematic risk by replacing its actual growth rate with a certainty-equivalent rate (i.e., its
risk-free rate) and then behaving as if the world were risk neutral (Cox and Ross 1976,
Constantinides 1978, and Cox, Ingersoll, and Ross 1985). That is, the normalization in a
market context is that a non-dividend paying stock earns at the risk-free rate (regardless of
its risk), the expectation of the normalized stock price minus the exercise price is taken as
if the agent is risk-neutral, and the result is discounted at the risk-free discount rate. In
this case, the state prices are identical to the “risk-neutral” probabilities times the risk-free
discount rate.

State prices in a two-period world can be determined using an arbitrage approach as

follows. Suppose that the number of linearly independent secuNjiesy(ials the number

of states §). The period 1 state-price vectorys :[t,ui W o t,Uf]T; the period 0

security-price vector ig=[q, @, ... ] ;and the period 1 security cash flow matrix
D is anN by S matrix where elemenD; is the cash flow of securityin statej. A system

that is free from arbitrage requires thgae Dy, . D is invertible because the securities

are linearly independent and markets are complete §.e.N). Thus, the state price

vector equals the inverse of the cash flow matrix times the period O security prices, or

¥,=D7q.

1.2.2 Equilibrium Valuation

While valuation by arbitrage is the most widely used approach to pricing derivative
securities in financial markets, it is not the only approach. Another approach is
equilibrium valuation. This approach was pioneered by Arit®64) and Debreu (1959).
Rubinstein (1976) demonstrated how @lgium valuation is linked to valuation by
arbitrage.

Equilibrium valuation in a pure trade economy with complete markets begins with a

group of agents. Each agent has an initial endowment and a strictly increasing, strictly



concave, differentiable utility function, and optimizes consumption using a trading strategy
such that the market is in equilibrium. The associated equilibrium allocation is Pareto
optimal. This means that there is no other feasible allocation that makes all agents at least
as well off and at least one agent better off. Since there is an equilibrium that is Pareto
optimal, there is no arbitrage, and therefore there is a set of state prices (Duffie 1992).

The equilibrium approach differs from the arbitrage approach in that no prices are given
initially.  Rather, all prices in the economy are determined through an economic
optimization. The result of the optimization is a set of state prices based on marginal
utilities.

Huang and Litzenberger (1988) show that when the allocation of state contingent
claims is efficient and individuals have time-additive, state-independent, strictly increasing,
strictly concave, and differentiable utility functions, state prices are determined as if there
were a single individual in the economy endowed with the aggregate endowment. State
prices are the set of prices that make the representative agent’s initial endowment the
optimal consumption choice.

This problem is solved by maximizing the representative agent’s utility maximization

problem subject to its endowmerfie, e;6 0 R, g 0 R}. The first order necessary

conditions of the maximization probleiax [Lb( z)+ pml(zl)] subject to the constraint
204
that @ z,+@, [z <yY,e+, (& along with market clearing conditions require that

2

v PU(8) o ics (p is the probabilty vectop =[p* p

Yo W(e)

is the probability that statewill occur). Summing the first orderenessary conditions

i’ wherep

over alli and treating ¢/, as the numeraire results in the ratio of the period 1 expected

marginal utility divided by the period 0 marginal utility being equal to the sum of state

priy'(e)
U'(&)

asset (i.e., that asset has a cash flow of $1 in all states in period 1), gg thaty? ,

prices. That isg, 1= . The sum of state prices equals the price of a risk-free

where @} is the risk-free discount rate. This and the previous equation are substituted



into the first order necessary conditions to obtain the set of state prices, namely that

2p‘q_(¢) for 1<i<S. The set ofpiL(é)
pOy'(e) pliy'(e)

s pu'(é
the “risk-neutral” probabi"tiesénausezsﬂbi—'((éle?)
=1 1

“risk-neutral” probabilities times the risk-free discount rate.

=y for 1<i<S are interpreted as

=1. Thus, the state prices equal the

1.2.3 Valuation by Single-Agent Optimality

The least common approach to determine state prices is through the use of single agent
optimality. This approach determines state prices by examining individual consumer
behavior. It turns out that this may be the most important approach from the perspective
of this research.

Given that an agent with a strictly increasing utility function is consuming optimally and
markets are complete, the ratio of two state prices equals the ratio of the respective
marginal utilitiess The mechanics and results of this approach are very similar to the
equilibrium valuation approach. The primary difference in the result is that the individual
agent’s utility function repices the representative agent’ditytfunction and individual
agent consumption replaces market endowment in the state prices.

The consumer’s utility maximization problem can be formulated by allowing the
consumer to purchase some portfolio of market-traded securities that have state-
contingent payoffs that result in the optimal consumption over time. Alternatively, the
problem can be formulated by taking the set of state prices a$ giveéthen allowing the

consumer to optimize state-by-state consumption; that is the approach taken here.

The first order conditions for optimality for the probledtax U(g,c,) subject to the
Co,C1

constraint that ¢, +¢,[¢, < e+, (& areﬂz}\ and ﬂ.:w;}\ for 1<i<S.

9(c,) d(c)

! Luenberger (1997) shows that a similar result can be obtained when markets are incomplete as long as

the investments are infinitely divisible.

2 The prices could be calculated using valuation by arbitrage.
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Summing over all, ﬂE:L = Al =@A. The binding budget constraint leads to the

ac.)

result thaty, = 2 If the utility function is an additive expected utility as in the

N
@EL

previous section (i.eUJ(c,,C,) = W( )+ pliy(c,)) then the state prices have the same

form as before (i.e.y; :t,u‘l’pq—(dl)). Once again, the state prices can be interpreted
py'(c,)

as the “risk-neutral” probabilities times the risk-free discount rate.

1.3 Real Options

Financial option evaluation methods have more recently been applied to evaluate the
flexibility associated with physical investments. Some have labeled this extension real
options. Real option evaluations account for the value of ifiexiembedded within
projects. Like the field of financial option valuation, this is a large and growing'field.

The field of real options is an important one from the perspective of this research
because it represents a field that is between financial economics and decision analysis. The
field of real options focuses on the investment and how to capture the value of the
flexibility of the investment.

This focus is best illustrated by Dixit and Pindycd©94). The authors take two
approaches to evaluating investments. One is a contingent claims analysis and the other is
a dynamic programming analysis. The contingent claims analysis, which is essentially the
same as a financial economics options valuation, constructs a risk neutral portfolio and
applies the principle of no arbitrage to value the investment. The critical assumption
implicit in the contingent claims analysis is that stochastic changes in the investment’s
value are spanned by existing assets in the economy. This requires that capital markets are
sufficiently complete so that a dynamic portfolio of assets could be constructed whose

price is perfectly correlated with the value of the investment. This is a crucial point,



because this assumption is widely made when evaluating real options. For example, this is
a fundamental assumption in the bd®&al Optiondy Trigeorgis (1996).

Dixit and Pindyck value an investment using a dynamic programming approach when
spanning conditions do not exist. The application of this approach states that, over a short
interval of time, the total expected return of the investment opportunity is equal to its
expected rate of capital appreciation. According to Dixit and Pindyck (1994, p. 147), a
difficulty of this approach is that “it is based on an arbitrary and constant discount rate. It
is not clear where this discount rate should come from, or even that it should be constant
over time.” Dixit and Pindyck (1994, p.152) elaborate on this critical point (with the
emphasis being mine):

“Hence, the contingent claims solution to our investment problem is equivalent
to a dynamic programming solution, under the assumption of risk neutrality (that is
the discount rate [of the dynamic programming approach] is equal to the risk-free
rate). Thus, whether or not spanning holds, we can obtain a solution to the
investment problem, but without spanning, the solution will be subject to an
assumed discount rate. In either case, the solution will have the same form, and
the effects of changes [in certain key variables] will likewise be the same. One
point is worth noting, however. Without spanning, there is no theory for
determining the ‘correct’ value for the discount rat@nless we make restrictive
assumptions about investors’ or managers’ utility function§he CAPM, for
example, would not hold, and so it could not be used to calculate a risk-
adjusted discount rate in the usual way.”

The implication of this is that, while you can use the dynamic programming approach

when markets are incomplete, there is no theoretically correct way to select the correct

discount rate.

1.4 Decision Analysis

The field of decision analysis (and decision sciences) focuses on the decision maker. A
wide range of theories are captured under this title. Some of these theories include
expected utility, subjective expected utility, prospect theory, rank-dependent utility, state-
dependent subjective expected utility, etc. It would be difficult to give an adequate

treatment to all of these theories in this section.

% See the bibliography in a recent book on the subject (Dixit and Pintiy@&) or Trigeorgis (1996).
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The major point of this section is that all of these theories are united by their focus on
the decision maker. Whether the theory is normative in that it is intended to suggest how
decisions should be made or whether it is descriptive in that it is intended to describe how
decisions are actually made, the central focus of all of these theories is on the decision
maker.

Two theories are briefly discussed here: expected utility (and subjective expected
utility) and prospect theory. The expected utility theories have been around the longest
(Bernoulli1738, and von Neumann and Morgenstern 1944) and are prohihtie shost
widely used. Fishburn (1982) presents an excellent summary of the various axiomatic
approaches to arrive at the expected utility theories. Howld892( pp. 33-34) takes
another approach in his articulation of the foundations of decision analysis in five rules of
thought. While there are a variety of ways the parameters in the expected utility function

can be expressed, a typical one is that the utility of a project with payoffeeqtials
S
Z piL(V\6+ >&), wherep' is the probability of the payoff occurring andw, is initial
1=1

wealth. One wants to determine the certain equivaldatthat makes the decision

maker’s utility with the payoffs the same as the utility with the certain equivalent (i.e.,

S

u(w0+CE):Z1 pdw+ X).

A second theory that is of particular interest to this research is prospect theory
(Kahneman and Tversky 1979). Prospect theory was developed in a response to observed

descriptive violations of expected utility theory. Prospect theaggested that the

payoffs x be evaluated using a function of the for%rp(pi)u(){'), where ¢(p') is a
1=1

decision weight; future work extended the definition of the decision weight to depend on
other variables as well as whether there was a loss or a gain (Hogarth and Einhorn 1990,
Tversky and Wakker 1995). While proponents of prospect theory state that the decision
weights are not probabilities, the improved descriptive capability of the inclusion of

decision weights will be seen to be of value later in this research.



1.5 Method Comparison

To set the stage for the contribution that this research makes, it is important to identify
some of the weaknesses associated with decision analysis as it is typically applied. As
stated above, it would be difficult to do this for all of these theories. Fortunately, the
three primary weaknesses identified in the following sections are applicable to essentially

all of the theories. For this reason, the basis of comparison is expected utility theory.

1.5.1 Expected Utility Results can be Inconsistent with a Market Valuation

First, the valuation results from an expected utility approach are exessarily
consistent with a financial economics approach. Consider the following illustration.

Suppose that a risk-averse decision maker is evaluating three projects. Riuggsk,
which is greater than 0, with probabilpyelse it pays Qx, p0,1- p). ProjectY paysy,
which is greater than 0, with probabilityplelse it pays O ,@;y, 2 p). ProjectX+Y is
the sum of projecX and projectY so that it pays< with probability p andy with
probability 1p (x, py1- p. LetVy be the value for the financial economics approach

and the certain equivalent for the expected utility approach of pjethe value of two
projects combined equals the values of the individual projects summed together when

using a financial economics approach, i¥,,, =V, +V,. The certain equivalent of two

projects combined, however, does not necessarily equal the certain equivalents of the
individual projects summed together when using an expected utility approach.
The financial economics approach starts with the assumption of complete markets.

This means that a state-price vector exists. Thus, the state-price weighted sum off the
payoffs ~ for  project X is  V, =[x 0] Eﬁt,ul 4/2] ='x. Likewise,
v, =[0 ylfg' ¢?]=¢’y and Vi, =[x yu' ¢*|=w'x+@®y. This means
that V., =V, +\,.
The expected utility approach requires thdtay, + Vs ) = pf w+ 3+(1- p (1@ and

uw, +V\)= pdw)+(1- pow+ y for projects X and Y. This means that

10



=upw+ +(A- paw]- w and W =u[puw)+ (- B @ wr Y- w
Suppose thatV,,, =V, +V,. Substituting for V, +\,, addingw, to both sides, and
taking the utiity results in u(w,+V,,)= J U pdw+ ¥+(1- plw]+
upu w)+(1- g w+ Y- vy}. The expected utiity approach requires that
u(W, +Veoy) = pY W+ J+(1- p (1 w+ Y for the projectX+Y. The previous equation

simplifies to this only whernu(A+ B)= ( A+ { B. This is the case whenis linear and

the decision maker is risk-neutral. This violates the initial assumption that the decision
maker is risk-averse. Thus, an expected utility approach for a risk-averse decision maker
cannot obtain a value for all three of these projects that is consistent with a financial

economics approach.

1.5.2 Expected Utility Theory Lacks a Temporal Element

Second, an expected utility formulation lacks a temporal element although the
parameters used in the analysis are often from different time periods. Specifically, the
expected utility analysis evaluates the expected utility of wealth (at the time when the
decision is made) plus the project’s payoff (at the time when the uncertainty is resolved).
A difficulty with this formulation is that the existence of uncertainty in any decision
problem requires that there is some period of time between when the decision is made and
the uncertainty is resolved (Pope 1985). For example, if the decision is made in period O
and the uncertainty is resolved in period 1, wealth is taken at period 0 but the project’s
payoff is taken at period 1.

One solution to this problem is to take wealth and payoff from the same period with the
appropriate period being the time when the payoff occurs. That is, wealth is taken from
period 1 rather than period 0. An implication of this is that wealth in the expected utility
formulation is no longer certain but can vary. The payoff itself is no longer the key factor.

Rather, it is the covariance between wealth and payoff that is crucial.

4 It is assumed that the decision maker’s utility function is invertible.
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Kasanen and Trigeorgis (1995) formulate a decision analytic problem using this
approach of having wealth and the payoffs occur at the same time. They assume that there
exists a utility function for the whole economy. They then take a first order Taylor series
expansion of their formulation around market wealth. The result they derive is the same
as one would obtain by taking the state prices defined using an equilibrium approach
(section 1.2.3), replacing endowment with wealth, calculating the state-price weighted
sum of the payoffs, and applying the definition of covariance. That is, they show that an

expected utility framework can be linked to finance theory by allowing wealth to vary.

1.5.3 Expected Utility Theory Does Not Allow for Prior Consumption Changes

Third, expected utility theory does not allow for changes in prior consumption that can
occur when a certain equivalent is given rather than a project. That is, offering a certain
equivalent for the project’s payoffs in isolation from other decisions can alter decisions
that must be made before the uncertainty is resolved. Matheson and Howard (1989, p.
44) recognize this when they state that “the approach [of calculating the certain equivalent
of the project] is appropriate when there is no opportunity to utilize the information about
the outcomes as it is revealed.” Likewise, Keeney and Raiffa (1976, p. 512) point out that
the time resolution of uncertainty affects earlier acts, and Becker and Sarin (1989) and
LaValle (1989, 1992) state that decision trees cannot be simplified by certain equivalent
substitutions without potentially affecting preferences for initial acts. Viewed from an
economics perspective, Mossin (1969), Spence and Zeckhauser (1972), and Dreze and
Modigliani (1972) observe that induced preference for incorfien@t in general satisfy
the von Neumann-Morgenstern axioms even if preference for consumption has an
expected utility representation.

In response to some of these observations, Kreps and Porteus (1978) propose a
generalization of von Neumann-Morgenstern utility called temporal von Neumann-
Morgenstern preference. Kreps and Porteus (1979a) derive the necessary and sufficient
conditions for induced preference to satisfy the von Neumann-Morgenstern axioms in a
two-period model and show that they are quite stringent. In a consumption-savings

problem, the conditions translate into a utility function of the form
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U(c,¢)= f(q)+ d ¢) it g+ ¢, a special case of which is a utility function that is
exponential in period 1U(c,,¢) = u( ) —exg-A g). Smith and Nau (1995) extend this

result to partially complete markets with more than two time periods with similar results
(i.e., there is a time-separable utility function that is exponential in every time period

except period 0).

1.6 Objective

The objective of this research is to develop a valuation approach that is theoretically
consistent whether markets are complete or incomplete and investments are not infinitely
divisible. The only things that will change depending upon market conditions are the
parameter inputs into the valuation framework. That is, the goal is to provide an
evaluation framework that produces results that are identical to a financial economics
approach when markets are complete but is applicable when markets are incomplete.

The outline of the report is as follows. Chapter 2 develops the approach in a discrete
time, two-period world. Chapter 3 extends the results to multiple time periods. Chapter 4
illustrates how to apply the method to a real world problem. Conclusions and
recommendations for further research are presented in Chapter 5. Proofs are presented in
Chapter 6 and a discussion about time- and state-separable utility functions is given in
Chapter 7.
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2. Single-Period Model

This chapter develops a single valuation approach applicable in complete and
incomplete markets in a discrete time, single-period setting. Assumptions and definitions
are presented in Section 2.1. A decision maker’s buying price for an investment with
uncertain payoffs satisfies the condition that utility with the net payoffs (see Definition
2.2) equals utility without the net payoffs (Section 2.2) and the condition that utility
cannot be improved by changing consumption or market transactions (Section 2.3). An
example is included in Section 2.2 about how this approach eliminates the need to
separately define a “buying price” and alfisg price.” Section 2.4 introduces the
assumption of a time- and state-separable utility function and demonstrates that the
decision maker’s buying price for the investment is approximately equal to the state-price
weighted sum of its payoffs; results are exact when markets are complete or the utility

function is additive exponential. Exponential and logarithmic examples are included.

2.1 Setting

This section assumes a discrete time, single-period setting. Period 0 has no uncertainty
and period 1 has a finite sdt, 1, 2.., S}, states of uncertainty, one of which will be
revealed to be true in period 1. Complete markets means that a unique state-price vector
exists with a price for all states (Duffie 1992). Incomplete markets means that the only

asset available is one that allows risk-free borrowing and lending. Both types of markets

allow for the purchase of infinitely divisible assets. All vectors in this section &ave

elements unless specifically noted and are printédli type. z[OR®> means that hasS

elements so that = [21 z .. z°’] andR®> means that there are no sign restrictions on

the elements of, zOR® means that every element pfis non-negative; and OR?,

means that every element afis strictly positive. Subscripts refer to times and

superscripts refer to states.

Definition 2.1: S, OR is the period 0 price of an investment that has period 1 payoffs

of x, OR®. Uncertainty is resolved in period 1 and there are no sign restrictions on the

investment price or its payoffs, may be known or unknown. The objective of this work
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is to either findS, if it is unknown or to determine if the investment should be made if it is
known.

Definiton 2.22 B, 0OR is the decision maker's period 1 buying price for the
investment’s period 1 payoffs. It is the amount that the decision maker is willing to pay
in period 1 in order to receive the payoff vectar This definition is made more precise in

Theorem 2.1. The net payoffs are the payoffs minus the period 1 buying price; i.e.,

x, —B10R’. The period 0 buying price equals the period 1 buying price discounted at
the risk-free rate since the period 1 buying price is a certain cash flowBj.e.(/JB,

where? is the risk-free discount factor (O superscript) between period 0 and period 1 (1
subscript). The decision maker is better off buying the investment if the price is less than
the buying price; i.e.§ < B. The price does not have to equal the buying price in
incomplete markets.

Definition 2.3: Ac, OR and Aw, OOR® are the changes in period 0 consumption and
period 1 wealth due to re-optimization after the net payoffs are added. For example,
suppose that an initial dptization states that optimal wealth in period 1 siaie w,.

The addition of the investment's payoff in statas well as the buying price for the
investment changes this t + X, — B. The decision maker then re-optimizes and the
new wealth isn + X — B +Aw,.

Assumption 2.2 The decision maker has a strictly increasing utility function that maps
period O consumption and period 1, state-dependent wealth to a real number.
U:R xR -~ RwhereU=U(z,z). z OR is period 0 consumption angd OR} is
period 1, state-dependent wealth. A solution exists to the utility maximization problem,

maxU(z,,z), where(z,z) is budget-feasible. A solution also exists when any finite
0.4

uncertain payoff is offered to the decision maker.
Assumption 2.2 As illustrated in Panel O of Figure 2-1, the decision maker begins

with an initial wealthw, and possibly a set of other pre-existing uncertain payoffs

summarized byX, OR®; note thatX, is not the same a®,. The decision maker
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maximizes utility given these initial conditions prior to adding the net payoffs. The result

is that the optimal period 0 consumption/period 1 wealth paic,isv;) before the net

payoffs are added. The decision maker then adds in the net payoffs and re-optimizes with

the result that the optimal period 0 consumption/period 1 wealth pé,i&; ), where

¢, =G +tAg andw, =w, +Aw, + x,—B/1.

Period O Period 1
X'
.. X2
Initial Wealth/ 1
0 Pre-existing Wo
Uncertain Payoffs :
X,°
w,!
Optimize w,°
1 Consumption/ c
Wealth ° :
wlS
Add Net Payoffs w,* +A Wy + x,* B,
2 and CotAC,
Re-optimize

Figure 2-1. Initial condition and optimal cons./wealth with and without net payoffs.

2.2 Indifference Condition

Two conditions must be satisfied in order Byrto be the buying price of,. First, the
decision maker’s utility with the net payoffs must be the same as the decision maker’'s
utility without the net payoffs. Second, the decision maker cannot improve utility by
changing consumption or market transactions. The first condition is developed in this

section and the implications of the second condition are developed in Section 2.3.

16



Theorem 2.1 If B, is the period 1 buying price for the payoffsthen the utility of the
original optimal consumption/wealth pair plus the net payoffs plus changes in
consumption/wealth due to re-optimization (Panel 2 of Figure 2-1) equals the utility of the
original consumption/wealth pair (Panel 1 of Figure 2-1).

U(6 ) = Ul w,) @1

where¢, = ¢, +Ag and W, =w, +Aw, + x, - B]1.

Theorem 2.1 differs from a typical expected utility approach in four ways. First, there
are no constraints on the utility function’s form or the separability of the arguments.
Second, wealth occurs in period 1 and can be state-dependent. Third, the decision maker
can re-optimize after the net payoffs are added. Fourth, all changes to the utility
function’s arguments occur on one side of the equation by adding the payoffs, subtracting
the buying price, and allowing the decision maker to re-optimize. This fourth point is
attractive because there is no need to formulate separate problems depending upon
whether the decision maker is “buying” or “selling” the investment; all problems are
formulated as if the investment has been purchased. Consider the following example.

Example 2.1: “Buy Investment.” A decision maker is deciding whether or not to pay
$26K in period 0 for an investment that has period 1 payoffs of $20K or $40K. Without
the investment, optimal period 0 consumption is $10K and period 1 weklbde $100K
in all states. Thusw, =[100 104 andx, =[20 4( . As shown in the left side of

Figure 2-2, Theorem 2.1 requires thai10+Ac, 120+ Aw;~ B, 140-AW - B) =
U(10,100,100). The decision makeiillwe better off to “buy” the investment if

$26K < B,, wherey? is the risk-free discount factor between period 0 and period 1.

“Sell Investment.” Conversely, assume a decision maker owns an investment that will
pay off either $20K or $40K in period 1 in addition to other period 0 wealth. The decision
maker has been offered $26K in period 0 for the investment and is deciding whether or not
to accept the offer. After aptizing (but before calculating the buying price for the

payoffs), the decision maker decides that optimal period 0 consumption is $10K and

period 1 wealth will b&s120K or $140K. Thusw, =[120 14(Q andx, =[-20 -4( .

As shown in the right side of Figure 2-2, Theorem 2.1 requires that
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U(10+Ac,, 100+ Aw; - B, 100 Awf ~ B) = U 10120140 The decision maker will be

better off to “sell” the investment ¥$26K < 7B, (i.e., if $26K> ¢B)).

“ ” “Sell Investment”
Buy Investment . o
(i.e., buy negative investment
Period O Period 1 Period O Period 1
- 100 120
Originalcy/w, | 10 < 10 <
100 140
Original cy/w, 1 1
+ Net Payoffs | 10 4c, << 20" 1| 19.4p¢, < 100%W4 B
+ Re-optimizatiof 140+Aw,>-B, 100+Aw,*-B,

Figure 2-2. Optimal consumption/wealth with and without net payoffs (Example 2.1).

2.3 Optimality Condition

The second condition that must be satisfied when there is an inter-temporal component
to the utility function (i.e., there exists utility associated with period O consumption) or
when markets are complete is that the decision maker cannot improve utility by changing
consumption or market transactions. This condition is true by assumption and has several
implications as summarized in the following corollaries; proofs for the corollaries are in
the first Appendix.

Corollary 2.1: The optimality condition implies that period O marginal utility
discounted at the risk-free rate between period 0 and period 1 minus the sum of period 1

marginal utilities equals zero.

Mg (22)
0C, oW,
where df = dAJ dAJZ ... —=| and ¢? is the risk-free discount factor between
oW, | oW oW oW,

period O and period 1.
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Corollary 2.2: When markets are incomplete, the change in period 1 wealth due to re-
optimization is constant across all states and equals the opposite of the escalated change in
period O consumption .

Aw, =-Ac, /¢S . (2.3)

Corollary 2.3:  When markets are complete, there is no change in period 0

consumption (so that, = ¢,) or total period 1 wealth with the net payoff (so that

W, =w, forl<i<sS).

2.4 Buying Price

Assumption 2.3 The utility function is assumed to be time- and state-separable for the

remainder of this section.

U(z,2)= w(2)+u(z)0 (2.4)
whereu,(z)=[u(Z) ¢(2) .. & 2)]-

This assumption is more general than assuming that the form of the utility function is
expected utility (i.e.,ul(zl):[plq(z}) Fu(?) - P 1i)]) because it allows the

form of the utility function to be state-dependent.

Theorem 2.2 For time- and state-separable utility functions, the period 0 buying price
B, for period 1 payoffs o%, is approximately equal to the state-price weighted sum of the
payoffs. Results are exact when markets are complete or the period 1 utility function is
linear or exponential.

B, O, X, . (2.5)

0
The state prices equaplzlél—ljléiDRi, where Du, =[0u; O& ... O&] and
u

_ u(W) - i v)
Ou - A+ % - B
=uy'(w) forAw, + %~ B =0

Proof: According to Theorem 2.1 for a time- and state-separable utility funétias,

forAw, + X - B #0

the period 1 buying price for payoffs if uy(&,)+u,(W,)1 = w( )+ u,(w,) (1. This can
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be rewritten as (&) () +[u(W)-u(w)]1=0 and then as

OuAc, + Ou, [Aw, + x, - B1)=0 with Ou, defined above and

_ (&)~ w(%)
Oy, - Ac, for Ac, # 0 . Dividing by Ou, [1 (it is strictly positive because
=4'() fordg, =0

every element of Ou, is strictly positive) and addingB, results in

B, = Cu, X, + Du, [Aw, +D—UOACO. B, is discounted to period O at the risk-
Ou, 1 Ou, 1 Uu, [1

free rate since it occurs at period 1 with certainty with the result that the period 0 buying
price is
(2.6)

_ Y70y, W0y,
B, = X, + [Aw, + Ac. .
0 lﬂl 1 |:|:|U EI. 1 I:lu D. CO

1 1

Theorem 2.2 is proven if the second and third terms of (2.6) are approximately equal to

0 0
zero; i.e., whe Wiy [Aw, + 0% Ac, 0. Consider two cases.
u, (1 Ou, (O

Case 1: Complete Markets. Corollary 2.3 implies thaic, =0 and states that

W, =w, for 1< i< S when markets are complete. The third term of (2.6) equals 0 because

Ac,=0. The second term equals zero bec uL-gé— i (w,) , Which are the
Ou, 1 u,'(wy) 1|’

state prices from a financial economics approach and the state price weighted sum of the
change in period 1 wealth must equal zero to avoid arbitrage opportunities.
Case 2: Incomplete Markets. The change in period 1 wealth associated with the re-

optimization is the same across all states when markets are incomplete and, according to

0

Corollary 2.2, it equaléw, = —2}—%. Substituting this into the second and third terms of
1

ll/fDUo —0u, O
Ou, (1

}Aco. This term is approximately equal to zero since the

(2.6) results ir{

numerator in the square brackets is approximately equal to the optimality condition from

Corollary 2.1.
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Linear and exponential utility functions represent a special case when markets are
incomplete so that Equation (2.6) is satisfied exactly. This is because there is no change in
period O consumption.

Corollary 2.4: When markets are incomplete, the change in period 0 consumption
must be zero if and only if the period 1 utility function is linear or exponential (see
Appendix for proof).

The following two examples illustrate how Theorem 2.2 can be applied.

Example 2.2 Investment Opportunity Using an Exponential Utility Function. A firm
is deciding whether or not to invest $0.6M in period 0 in a project that is equally likely to

pay off either nothing or $2.0M in period 1. The risk-free discount rate is 10 percent, the
firm's utilty function is U(z,z) = u(z)- P& - p&", wherez is in milions of

dollars, and markets are incomplete.

Consider the cases when there is positive and negative correlation between payoffs and
existing wealth (i.e.x, =[0.0 20 andw, =[100 12Q or w, =[120 10Q) as well
as the case when wealth is certam é[llo 11(]). State prices are calculated using

Theorem 2.2 with the results that: the buying price when there is positive correlation is

$01M =[086 Q03]$0.0M $2.0M]; the buying price when wealth is certain is
$05M =[0.65 026 $0.0M $2.0M]; and the buying price when there is negative

correlation is$13M =[0.26 0.63[J$00M $2.0M].> This suggests that the firm should

only invest when there is negative correlation because the project acts as a hedge against

uncertainty (i.e., this is the only case when the investment price is less than the buying

®> The definition of state prices in (2.5) for a period 1 exponential utility function results in a state-price

oo B X-BO - lngple—(m&+é)/p+pze-(m;”lz)/pE
vector 0 wl_wl%)(f—xll Xll—xf% where B, =-p E p1e-W}/p+ pze—wf/p E

Notice that the period 1 buying price equals the buying price with the payoffs minus the buying price
without the payoffs. This leads to the observation that an alternative approach to this problem is to
calculate the buying price for two portfolios (one with and one without the payoffs) and the difference
between the two is the buying price for the payoffs. For example, take the case when there is negative
correlation. The buying price for the portfolio of existing wealth is $9.6M and the buying price for the
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price $06M < $13M). It is important to realize that the large difference in buying prices
is due to the correlation, not to the size of the payoffs; e.g., it can be shown that the
relative difference in the buying prices is still very dramatic when the project is reduced to
a fraction of the size of the original project.

Example 2.3 Insurance Opportunity Using a Logarithmic Utility Function. A
decision maker currently has $100,000 and owns a home and wants to find his or her
buying price for the purchase of fire insurance. The home can be sold for $100,000 in

period 1 but has a 5 percent chance of burning down before period 1 (i.e.,

p=[0.05 0Q93). The  decision maker’s utiity  function is

U(2,2)=In(z)+ p10In( 2)+ p10in( Z), wherez is in thousands of dollars. The

homeowner can borrow and lend at 10 percent per period and markets are incomplete.
Without insurance, it is optimal for the homeowner to spend $16,538 in period 0 and to

invest the rest so that he or she will h&94,808 in period 1. Thus, including the value of

the housew, =[91808 19180B

Rather than performing a full optimization, assume that there is no change in period O

consumption or period 1 wealth so that the decision maker’s total wealth with the net

payoff equalsw, =[191808-B, 191808 B]. A fixed-point approach is used to
calculateB,, wherey,(B,)x, = /{B . The state-price vector i, =[0.0631 0846)

and the period 0 buying price B, =%$6,310; this result is almost identical to a full

optimization.

portfolio of existing wealth plus the payoffs is $10.9M. Thus, the buying price for the payoffs is
$1.3M.
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3. Multi-Period Model

Chapter 2 presented a single valuation approach applicable in complete and incomplete
markets in a discrete time, single-period setting. This chapter extends the results to a
multi-period setting. While this section follows the format from Chapter 2, the way in
which uncertainty is revealed over time needs to be determined in a multi-period setting.
There are several ways to make this determination. One approach is to use a probability
space (Duffie 1992). When the events of the pritityabpace are all taken together, the
result is a filtration that represents how information is revealed through time. Another
approach is to partition the state space. While the filtration approach has its advantages in
continuous time, the partitions approach is taken here because of its intuitive appeal.

This section develops a single valuation approach applicable in complete and
incomplete markets in a discrete time, multi-period setting. Assumptions and definitions
are presented in Section 3.1, with a particular focus on partitions. Section 3.2 shows that
the buying price for any investment satisfies the condition that utility with the net payoffs
equals utility without the net payoffs and the condition that utility cannot be improved by
changing consumption or market transactions. Section 3.3 introduces the assumption of a
time- and state-separable utility function and demonstrates that the decision maker’'s
buying price for an investment is approximately equal to the state-price weighted sum of
its payoffs; results are exact when markets are complete or the utility function is additive
exponential.  Section 3.4 iteratively calculates the buying price using a dynamic

programming approach. Exponential and logarithmic examples are included.

3.1 Setting

Definition 3.1: Sis the set of all possible states that can occur at timgsal to O, 1,
..., T2 Uncertainty is resolved as time progresses so that atttist@tes that have

occurred prior to time are known. This set of statgg 5,---, $ up to timet is denoted
as{s} . Thus,S|{s, O Sis the set of all possible states that can occur over tires

..., T given that the particular stateg...,5 occurred at times O, .t.,
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Definition 3.2: A partition of S|{s}t is a collection of disjoint non-empty subsets of
S|{s}, whose union isS|{s},. One way to partitiorS|{ s}, is in terms of the current
state and future partitions. Lq|{s}t_1 refer to states at timet given that states
S»---»$4 have occurred at times 0, .t:1; {s},_, ={0} whent equals 0. A partition at
time t of S|{sg}, for 0<t<T is the set that contains the current state and the set of all
partitions at the next period given that the current state has occurred. That is, the
partition RI{s} ={sH¢ _.{R.¢,}} for 0<t<T-1 Figure 3-1 ilustrates what

partitions look like when the state spaceSs{1,,1, 2, L|1, 2|1, 1|2, 2|3.” The

period O partition is the largest oval, the period 1 partitions are the medium sized ovals,
and the period 2 partitions are the smallest ovals. The period O partition contains all

subsequent partitions and thus the entire state space since there is no uncertainty in period

0.

Period O Period 1 Period 2

Figure 3-1. Uncertain states (numbers) and partitions (ova®) of

® Asin Section 2, all variables that have more than one element are presented in bold type.
" State §is not explicitly included in periods 1 and 2 for notational simplicity because it is the same in

all states.
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Definition 3.3: S, 0 R is the period O price of an investment that has time- and state-

dependent payoffs™"* OR*% in partition R|{s}, ; i.e., x"* :{xtﬂ[s}‘,---,xf‘{ s}t}.

Definition 3.4: Bf'{s}‘ OR is the decision maker’s period buying price for the

RKs},

investment’s payoffs ok . It is the amount that the decision maker is willing to pay

RKs}

in period 7 in the partitionR|{s}, in order to receive the payoff vector It is

assumed that<7<T. That is, B,F”{S}‘ cannot occur before the partition is defined or
after the end of the analysis. The definitionB;Pf{S}‘ iIs made more precise in Theorem
3.1. The net payoffs associated with the payaﬁ‘gs}‘ and the buying pricer'{S}‘ are

{xf'{s}‘,--- e gRtdig L. xTF"{S}‘} where thel vector corresponds to the number of

1T

states at time in partition P|{s}

.
Definition 3.5: Ac OR® are the changes in consumption due to re-optimization after
the net payoffs are added.
Example 3.2 In order to illustrate the definition of net payoffs, consider the state
space from Figure 3-1 with an investment that has period 2 payoffs given that state 2

occurred in period 1. Since all payoffs occur within the partif®)B, , the payoffs are
[x,XP} and the net payoffs can be written as eithfrB’,%? X"} or

{xé'z— B, X% - 5} as illustrated in Figure 3-2; the time subscripts on the states have

been dropped for notational simplicity.
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Period O Period 1 Period 2 Period O Period 1 Period 2

~ ~
| <

X22|2 X22|2_ 822

A B

Figure 3-2. Two ways of delineating the net payoffs.

Assumption 3.2 The decision maker has a strictly increasing utility function that maps
consumptiorz over all times and states to a real numbdgrR® - R whereU =U(z) and
zOR?. Utility of consumption in the final period can be viewed as utility of wealth. A
solution exists to the utility maximization problemé ni&pz), wherez is budget-feasible.

Assumption 3.2 c is the solution to the utility maximization problem before the net

payoffs are added anél is the solution after the net payoffs are added, where the

sum of the original optimal consumption c),( the net payoffs

{xf'{s}‘,---,xf'{s}‘ -t 1,---,xTF"{S}‘}, and the changes in consumption due to re-
optimization Ac for 0<t<T ). That is,€ = c+ x+ Ac except for the case whetrt

and the partition i®|{s}. in which caseg["™ = % + XT3 —gFlh1+ AT

3.2 Necessary Conditions

As in the single-period model from Section 2, two conditions must be satisfied in order

RKs},

for B,F”{S}‘ to be the periodr buying price for the payoffs First, the decision

maker’s utility with the net payoffs must be the same as the decision maker’s utility
without the net payoffs. Second, the decision maker cannot improve utility by changing

consumption or market transactions. The first condition is developed in Theorem 3.1.
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Theorem 3.1 If B,F”{s}‘ is the periodr buying price for the payoffsﬁ'{sh then the

utility of the original consumption plus the net payoffs plus the changes in consumption
due to re-optimization equals the utility of the original consumption.

U(é)=U(c) (3.1)
where € is defined in Assumption 3.2.

Figure 3-3 illustrates the state by state consumption associated with Theorem 3.1
within the context of Example 3.1. Consumption in the top part of the figure is the
original optimal consumption. Consumption in the bottom part of the figure is optimal
consumption when the net payoffs are added. The theorem requires that the utility of
consumption in the top part of the figure equals the utility of consumption in the bottom

part of the figure.

Period O Period 1 Period 2
101
1 Cz
C < 2t
Original 2
Consumption Co , cl2
G < 2
Original l|l+A(‘éll
Consumptior] <
+ Cl + Aql C 1y A
Net I:rottery C, + Aco CP + ACR + P - B
| GHAG <
Consumptior 2|2 +ACz|2 + 2R _ Bf
Changes %

Figure 3-3. Optimal consumption with and without net payoffs.

Optimality Condition : The second condition that must be satisfied is that the decision
maker cannot improve utility by changing consumption or market transactions. This
condition is true by assumption and has several implications as summarized in the

following corollaries; proofs for the corollaries are in the appendix.
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Corollary 3.1: The optimality condition implies that, within any given partition
RI{s},, the marginal utility at the beginning of the partition (i.e., at tindiscounted at
the risk-free rate betweenandt' in the partitionR|{s}, (¢?,) minus the sum of all

marginal utilities at timé¢’ in the same partition equals zero, whéret<t'<T.

NN L (3.2)

0 —
Wi FRONPTICH

Corollary 3.2: When markets are incomplete, the change in consumption due to re-
optimization at the final tim& is the same across all states in partitﬁq)m{s}T_1 in order

to fully satisfy the budget constraint. The result is that any particular budget constraint

can be rearranged as follows.

pcH s = _[Ai_olﬂ{s}” j o [Aﬁ{s}l j i [i?j_ [f,% j | (3.3)
T-1,T 2T 1T oT

Corollary 3.3: When markets are complete, there is no change in consumption in any

state so thaE =c.

3.3 Buying Price

Assumption 3.3 It is assumed for the remainder of this section that the utility function
is time- and state-separable.
c (3.4)
U(z)=3 u(z)

t=0

whereu,(z) is the vector of utilities over all states at tinfe

8 Such a utility function can differentiate the way uncertainty is resolved into the analysis when one

models the utility of consumption rather than the utility of income.
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Theorem 3.2 For time- and state-separable utility functions, the peribdying price
B,F”{s}‘ for payoffs x0T i partition Pt|{s}t is approximately equal to the state-price

weighted sum of the payoffs.

|s1 m 1L e
1=t
. s O-I:l _RI{S}‘
where the state prices are 7 !{ b= %le}
’ Ou ™™
: :—qj(aj)_q(d) for¢' -¢ #0
Ou! ¢ -d , and ¢?, is the risk-free discount factor
=u'(q) foit - ¢ =0

betweenr andi in partition R|{s}, .

Proof: According to Theorem 3.1 for a time- and state-separable utility function,

T T
B'¥ is the periodr buying price for payoffsx™® if 3 u()1=Y u(g)@. This
0

t=0 t=

.
can be rewritten a$ Ou, ¢, - g ) =0 with Ou’ defined above. Substituting fd - ¢

t=0

and rearranging the changes in consumption, the payoffs, and the buying price according

to partitions and then dividing thIuR'{S}‘ [1 (because it is strictly positive) and adding
B results in
_DUOACO |

+ i[DuflAcf
&
1 | %I{ h

.
Bk A, 5 A3 s p ool
Wi ot Oushacst: (3.6)
=2F ST I [

Foot
STI{ }T 1

(b p 5
¢ 2 et Il
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R st
where 3, = oy

——————_. Theorem 3.2 is proven 8, 1 fort<i<T and if the second
@O 0uith o '
term is approximately equal to zero.

Consider first the terms. Substitutingi for t' in Corollary 3.1 results in
ouU ouU

0 _ _ I . :
l’U”gA{Sh énal{s}tﬂ 0. Substituting 7 for t in Corollary 3.1 results in
G G
o AU oJ _ : :
Ui g5 " rrs 1=0.  These two equations can be combined to show that
5étt 06Tt t
oJ
0éal{s}t
! EY =1. Thus, theB terms are approximately equal to 1 based on conditions
0
‘,UT,iW
of optimality.

Next, consider the bracketed term.

Case 1: Complete Markets. Corollary 3.3 states that c. This results inAu' = y'*

so that the first order conditions from Corollary 3.1 are satisfied exactly and all §6the
equal 1. In addition, the bracketed term is the normalized state-price weighted sum of the

changes in consumption. This must equal zero in order to avoid arbitrage opportunities.

Case 2: Incomplete Markets. It can be shown by substituting for ém?ﬁs}H using

sto~_
EIuTP‘HS}‘ 1

Corollary 3.2 that the bracketed term in (3.6) reduc 1 )

Uu, (1
Ou, —— )AQ)+
Wor

S RHs} Sral{sk_, Rroafst
Z !(Dulsl - DuzUO D‘)Aqsl + [ !(D Lfr:lﬂ{s}pz - DuT [ Aqsr_—lﬂ{s}r—z :l:” . This
S=1 1T

0
s ST, =1 wT—l,T

term is approximately equal to zero by optimality conditions from Corollary 3.1.

3.4 Buying Price Within a Partition

Determining the period 0 buying pri@ for payoffs x OR® based on the results of
Section 3.3 requires that the evaluation be performed over the entire period O partition in a

single step. This presents a potential weakness because it is not clear how well the
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respective sets ofiu's approximate the optimality conditions from Corollary 3.1. One
way to address this issue is to make the following assumption.

Assumption 3.4 The buying price for payoffs in prior time periods does not change
with the addition of net payoffs in subsequent time periods.

Example 3.2 Figure 3-4 illustrates the meaning and implications of Assumption 3.4

using the state space from Figure 3-1. Pan#ligrates that the decision maker wants to
determine the period 0 buying pri@ for the period 1 payofisx ={X;, X}, where
X =x+y,B and X’ = X +?,B . Assumption 3.4 states th§ is unaffected by the

addition of net payoffs in subsequent time periods. Panel B indicates that this allows the

decision maker to add the payoff}", "} and {x? %"} and subtract the respective

period 2 buying priceB; and B without changing,. Panel C shows that ti&s in
periods 1 and 2 cancel with the result tH3$ is the buying price for either
(X +Wl.B X+, B or {x,¢, % %" 4P, £P}.

Assumption 3.4 is so useful because it allows one to iteratively calculate the buying
prices of payoff subsets rather than having to calculate the buying price in a single step.
One begins with the final date in which there is any uncertainty, calculates the buying price

of payoff subsets, adds the result to the payoffs in the previous period, and repeats the

process until period O is reached.
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Period O Period 1 Period 2

Xi""l’fz% - 0
A —Bo<

X +Y,B —— 0
i — gt
Xll +4I1(,)2% < X§|1_ %
8| ~B < 2
+plB = 2 "%
’ x2? - B2
1 Xi'l
X < 2
B| —B < 2
2 X5
X = %

2

Figure 3-4. lllustration of Assumption 3.4.

More formally, the process is applied as follows. (1) Calculate theTtimging price

P

BT”'{S}H for the payoffsxTPT’”{S}H in partition P |{s}._, at timeT using (3.5). Repeat
this for all B_,|{s}, , partitions. (2) Discount the results to timiel at the risk-free

discount rate for a tim&-1 buying price ofL,U$_1,TB$”'{S}H. (3) Add these buying prices

to any payoffs for each partition at timeT-1 for a result of

%:T_‘f'{s}T-l = ﬁi‘;'{S}H +¢1$_1T B?“'{ 311 for each partition. (4) Convert theility function

of consumption over timesT-1 and T to the utility of wealth at timel-1 for each
partition. (5) LetT equalT-1 and repeat this process for each stage of uncertaintyf until
equals 1. The following two examples illustrate how this process is applied for additive
exponential and additive logarithmic utility functions when there are no pre-existing

uncertain payoffs.

® As discussed in Example 2.2, one approach to resolving situations with pre-existing uncertain payoffs

for which there are no markets is to calculate the buying price for two portfolios (one with only the
pre-existing payoffs and the other with both the pre-existing payoffs as well as the new payoffs). The
difference between the two is the buying price for the new payoffs.
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Example 3.3 Additive Exponential Utility Function. @ppose that the decision

maker’s utility function of consumption is exponential fromequals 0 toT:

.
U(z)= —Z ke **. The budget constraint when there are no other uncertainties prior to
t=0

.
the addition of the net payoffs i{ Wz <w,. The decision maker's problem is to
t=0

maximize utility subject to theualget constraint.
A dynamic programming approach can be used to reduce the utility of consumption
over all periods to the utility of consumption through tifa2 plus the utility of wealth at

time T-1 since there is no uncertainty at tifie Specifically, if U,_, is the maximum

utility from  periods O to T-2, the maximized utility equals

U,_, + max|-k,_,e TP — k g7’ T] subject to the budget constraint of
a7

Z e 1z < W, Wherey?; is the risk-free discount factor between tirfies and
. . W1 /P ~
T. The solution to this problem I9,_, — A_,e "™ where p;_, = pr_; + WS P

and A._, is a constant. This calculation can be repeated iteratively resulting in a utility
-1 o/ w3 - T

function that equals-3 ke ™™ — Ae™"" wherep. = ¢;,p, and A is a constant.
t=0 t=1

This approach of calculating a new risk tolerance as one moves backward in time is
consistent with results identified by Smith and Nau (1995).

To make the example concrete, assume that there are three periods (0, 1, ang 2), that
equals 1 in each period, that the risk-free discount rate is 5 percent per period, that the
payoff is either 1 or O in each period with a 50 percent pildaland that wealth is
constant. The same formula used for calculating state prices in footnote 5 is applicable

here with an adjustment being made to the risk tolerance parameter as the tree is folded

back. The result is that ¢i,=¢?,=[0362 059] so that
Bl =B =0362=[0362 0591 1 J0 Adding these buying prices to the period 1

payoffs results in a new set of payoffsqgf= [1362 0 362 and a risk tolerance of 1.95.
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This results in the state-price vectpr, , = [0.416 053]' for a period O buying price of
0.761=[ 0416 053J1f .1362 .03p2 This result is identical to a full optimization.

Example 3.4 Additive Logarithmic Utility Function. &ppose that the decision

maker’s utility function of consumption is logarithmic in every period. That is,

;
U(z) = kIn(z). The budget constraint when there are no other uncertainties prior to
t=0

.
the addition of the net payoffs El,l/?Zt <W,.
t=0

A dynamic programming approach is used to reduce this to the utility of consumption
through timeT-2 plus the utility of wealth at tim&-1 since there is no uncertainty at time

T. Specifically, ifU;_, is the maximum utility from times 0 t6-2, the maximized utility

equals U, + max[k._, I(z_,)+ k In(z)] subject to the budget constraint of
Tt

Z_,+P% ;< W,. The solution to this problem when repeated iteratively is
-1 T
U(z)= [; K, In(q)} +[(; kjln(w)} + A, where A, is a constant.

To make the example concrete, let the discount rate equal 5 percent, initial wealth
equals 2.84, antt, =1 k =1/¢?, andk, =1/¢. These assumptions result in an initial
state of consumption of 1 in all periods.

Now consider payoffs where the payoff will be either C or 8anh period with equal

probability, where C ranges from 0 to 6. The state prices in a given paRit{tst}t at

time 7 are solved for iteratively using the formulﬂpf‘lHS}T‘l(Bﬁ‘l'{S}T-l)Ekf-l{$r-1 =

T-171

t,US_L, Fraflshrg (as in the single period model, it is assumed k@t 0 since the change

r
in consumption is the same across all states in a given partition at the final time when
markets are incomplete). Figure 3-5 presents the period 0 buying price as a percent of
initial wealth for the range of payoffs evaluated. The figure suggests that, while not exact,
the result is a good approximation of the true buying price obtained by performing a full

optimization. The approximation is good because the first-order conditions of Corollary
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3.1 are approximately satisfied, not because of a lack of change in consumption when the

net payoffs are addéed.

200% p
= Expected .-
= Value .-
S 150% | o
© o
S o Estimated
o 100% | o Buying Price
O L
E s v ’ Z__ —_——
(@) ’ —
c 0p |- P
E L Exact /
s A Buying Price

0% 1 1 1
0% 50% 100% 150% 200%
Expected Value (% of Wealth)

Figure 3-5. Estimated and exact buying price for logarithmic utility function.

19 To illustrate, assume that the payoff is 6 or 0 in every period. Initial consumption is 1 in every state
and period. New state by state consumption {so,ci,cf,c’f,cgﬂ,c'zz,cg'z}:
{0.50,4.000.27,8.57,2.57,6.14,0.14} .
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4. Application: Investment in Distributed Electricity Resources

Electric utilities have become increasingly reluctant to invest in long lead-time, large-
scale power generation projects for several reasons. First, facilities have often cost more
and taken longer to construct than initially anticipated. Second, actual demand has often
not met expectations with the result that the investments were unnecessary. Third, the
investments have had a greater financial risk than initially anticipated because: a)
regulatory commissions viewed them as imprudent and prevented full cost recovery in
some cases; and b) competition from lower cost suppliers prevented full cost recovery in
other cases. The result is that generation investments have shifted away from long lead-
time, large-scale generation to short lead-time, modular generation. Sacramento
Municipal Utility District’s experience with nuclear power represents a good case study of
some of these issues (Smeloff and Asmus 1997).

Integrated utilities are being restructured into unregulated generation companies and
regulated transmission and distribution (T&D) companies. The regulated T&D companies
will continue to serve the role of power delivery. Historically, a utility’'s revenues have
been based on its assets. Given that this practice continues, these utilities may be tempted
to expand the T&D system whenever there appears to be a need.

Large T&D investments as typified by new transmission facilities are somewhat
analogous to large generation system investments: they are long lead-time, large-scale
investments. As a result, T&D companies can learn valuable lessons from the generation
investment experience and avoid some of the potential problems associated with long lead-
time, large-scale investments. The lessons are as follows. First, these investments may
cost more and take longer to construct than initially anticipated. Second, a careful
evaluation of demand uncertainty is essential prior to committing to any long lead-time
investment. Third, an accurate treatment of the financial risk associated with the
investment is critical, even within a regulatory environment; this is particularly true when
other alternatives represent a competitive threat to the utility.

Distributed resources can enable electric utilities to increase system capacity without

some of the drawbacks associated with large-scale, long lead-time transmission and
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distribution system (T&D) investments. This chapter evaluates the value of flexibility

associated with distributed resources to satisfy T&D capacity needs. It calculates
investment cost as a function of investment lead-time. The chapter begins with a
calculation of the expected cost of distributed resources to illustrate how to perform the
analysis for a risk-neutral decision-maker. Section 4.2 applies the results from Chapter 3
to account for risk-attitude under three situations: 1) there is only demand uncertainty; 2)
there is demand uncertainty and profit uncertainty, neither of which can be fully hedged by
entering into market transactions; and 3) there is demand uncertainty and profit
uncertainty, where the profit uncertainty can be hedged (see Hoff 1997a for more details

as well as how to incorporate modularity into the analysis.)

4.1 Expected Distributed Generation Cost

Distributed resources typically have shorter construction lead-times than large T&D
investments. This provides decision-makers with flexibility regarding when to make
investments. This section illustrates how to characterize the dynamic nature of demand
uncertainty and the important interaction that occurs between demand uncertainty and
investment lead-time.

Utility planners typically incorporate demand uncertainty into an evaluation by
projecting high, average, and low demand growth scenarios. The weakness of this
approach is that it only gives a static picture of demand uncertainty. That is, there are
only three possible paths that demand can follow.

A more accurate way to capture the dynamic nature of demand uncertainty is to
recognize that the rate of demand growth can change over time (Hoff and Herig 1997).
Figure 4-1 illustrates this point for a T&D system for a hypothetical utility. The heavy
solid line in the top part of the figure shows that historical peak demand increased in 1995,
remained constant in 1996, and increased in 1997; the heavy dashed line shows that
system capacity remained constant during this period. The light lines indicate an
assumption that demand will either increase by 2 MW or remain constant in any given year

(each outcome has equal chances); the light dashed lines indicate that a capacity
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investment is required. This results in many more than three possible paths that demand

can follow with the number of possible paths increasing over time.

The Dynamic Nature of Demand Growth
~ 644
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S ol Jrad
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Figure 4-1. Simple example.

The figure indicates that excess capacity will be eliminated if demand increases by 2

MW. The utility has decided that it will increase system capacity by either investing in a
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system upgrade or by investing in distributed generation. The system upgrade costs
$3.000 Mllion and has a one-year lead-time. The distributed generation costs $3.500

Million and has no lead-time. Both investments provide the same amount of capacity and
have infinite lives. The utility has a 10 percent discount rate.

The expected present value cost of the system upgrade is its investment cost of $3.000
Million. This is because the upgrade must bagimediately for the utility to be prepared
to satisfy peak demand the first time it occurs.

The expected present value cost of the distributed generation alternative equals the
probability that the investment will be made times the investment cost, discounted to the
current year. As shown in the figure, the investment could occur in 1998 (point A), 1999
(point B), 2000 (point C), etc. = The expected cost of this is calculated using the
probability tree in the lower right part of the figure.

While it can be shown that the expected cost of the distributed generation alternative
results in a binomial distribution (Hoff 1997b), a simpler solution is to recognize that the
tree has a recursive structure (see the lower left part of Figure 4-1). In particular, if
demand remains constant in 1998, the priityalree in 1998 is identical to the tree in
1997. The expected present value cost is the pitiypald high demand growth times the
distributed generation cost plus the probability of no growth times the expected present
value cost discounted at a rate of 10 percent.

Prob. of  Dist. Gen. Prob. of Expected
Expected High Growth ~ Cost =~ No Growth ost
— —— — ot

ost

- 05 x $35 + 05 x X

X =
1+10% (4.1)
.%/_/.
Discounting

A state price interpretation of Equation (4.1), since the decision maker is risk-neutral, is

that the state prices are the probabilities discounted at the discount rate.

X =y 3500 X] (4.2)
wherey =[0.4545 0 454b.

The result is that the expected present value cost for the distributed generation

alternative X, is $2.917 Mlion, which is less than the B0 Million cost of the system
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upgrade alternative. That is, the distributed generation alternative has a lower expected

present value cost than the upgrade.

4.2 Incorporation of Risk Attitiude

The previous section assumed that the decision-maker is risk-neutral. This section
incorporates risk attitude into the analysis using the results from Chapter 3. It analyzes
the cost of an investment that has no lead-time when there is at least one year until the
investment is required. It performs the analysis from three perspectives: (1) there is only
demand uncertainty; (2) the firm’'s value (as represented by its profits) is uncertain in
addition to demand but all markets are incomplete; and (3) both value and demand are
uncertain with markets being complete for the value uncertainty (i.e., the uncertainty
associated with the value of the firm can be hedged by entering into market transactions).
It is assumed that the decision maker has an additive exponential utility function and that

the risk-free discount rate and the risk-aversion coefficient are constant over time.

4.2.1 Demand Uncertainty

First, consider the situation when demand is the only uncertainty. This results in a
similar scenario as a typical decision analysis approach (Hol@&@) with the difference
being that there are multiple time periods. It assumes that the firm’s only uncertain cash
flows are the distributed generation costs and can be represented by the bottom of Figure
4-1. At any particular time, the cost at timé in state O (this is when demand equals 54
MW in Figure 4-1) equals the state price-weighted sum of the costs at tm&ates 0
and 1.
Xea SWiX + X (4.3)
where X is the discounted cost (the negative of the buying price) of all future cash at

time 7 in state 1 (demand equals 56 MW) axifi is the discounted cost of all future cash

flows at timer in state O (this is when demand equals 54 MW),
Results from Chapter 3 can be used to show that, after substituting for the state prices

when there is an exponential utility function, the equation simplifies as follows.
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- X _ X
X _prln[pex{ﬁr}(l p)ex{ﬁr ﬂ (4.4)

- 1+r

T-1
where the risk-aversion coefficient for all future wealth is the summation of the risk-

;
aversion coefficients over the remaining time periods 03;9.:, Z (1 P )t
= (1+r

- see Example

3.3 for a derivation of this result).
The risk-aversion coefficientg(, ) is constant over time since the time frame is infinite

p(1+r)

r

so thatp, = . The discounted cost of all future cash flows at tmne state 1 is

$3.5 Million (I = $3.5 Million) kecause no future investments occur once the investment is
made. The recursive structure of the tree can be exploited to find the cost atitime
state 0. The discounted cash flows in state O are identical for all years. In addition, the
utility functions are identical up to a scalar multiple. Thus, the cost in state O is the same
for all times so thatX? = X°,. The subscripts and superscripts are dropped and the
appropriate substitutions are made into Equation (4.4). Notice the similarity between
Equation (4.5) and Equation (4.1).

. ﬁln[pex;{%j +(1-p) ex;{gﬂ (4.5)

1+r

A simple optimization program and Equation (4.5) will show that the cost of this
investment ranges between $2.9 Milion and $3.2 Million depending upon the risk-
aversion coefficient that is selected when the discount rate is 10 percent. This is
consistent with intuition because a risk-neutral decision-maker would pay the expected
present value cost of $2.9 Million (the result from Equation (4.1)) while a highly risk-
averse decision-maker would pay $3.2 Milion (he or she would plan for the worst
possible scenario even though it only has a 50 percent chance of occurring; the worst case
scenario is that the $3.5 Million cost is incurred for certain in year 1 for a present value
cost of $3.2 Million).
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For purposes of illustration, assume that the decision maker has a risk-aversion

coefficient of $1 Million (so thafp =11) and that the discount rate is 10 percent. In this

case, the state prices ape=[0.4605 0448p and the investment cost is $2.928lidh.

4.2.2 Demand Uncertainty and Firm Value Uncertainty (Incomplete Markets)

Next, consider the situation when both demand and the firm'’s total profits are uncertain
and neither uncertainty can be hedged by entering into market transactions. This is the
case of incomplete markets. That is, a state-price vector for the firm’'s value does not
exist.

Suppose that the firm’s after-tax profitdlwe high ¢t") or low (/1) in any year with a
probability ofq and 1¢ respectively. While this model for profits does not allow for large
movements in the value of the firm, it will demonstrate the importance of the correlation
between distributed generation costs and the firm’s profits.

As before, an investment cost lofs incurred when demand increases (probalplty
and no future costs are incurred once the investment is made. The correlation between

distributed generation costs and firm profits is the same in every year that distributed costs

can occur and it equatsorr(l,71) .

Cash flows for the first several years are presented in Figure 4-2. The probabilities for
each of the branches are the same as those presented in the lower left part of the figure.
The probabilities in the branches are based on the joint probability distribution bgtween
andqg, whereA is the adjustment in the probability of high demand grgwiiivenq such

that the expected value and variance conditions on both distributed generation costs and

firm profits are satisfied;A= corr(I,m),/p(1- p)d1- g * V is the buying price of the

firm’'s profits without the distributed generation investment atds the distributed

generation cost.
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Profits Minus Distributed Generation Costs
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Figure 4-2. Firm’'s profits and distributed generation costs.

X The limits on the correlation for a giverandq are — min(BL : E{l) < corr(1,mm) < mir(l?{J ,3]1)

1-
i B, = u . This ensures that all probabilities are between

pi-9 " T{@-

0 and 1. Luenberger (1997, Section 16.4) presents an alternative way to determine the probabilities.

where B, =
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Once again, the recursive structure of the tree (both in terms of cash flows and the
utility function) can be exploited. The result is presented in the lower left part of Figure
4-2. As was the case in Equation (4.5), the recursive structure of the tree results in the
following formula with the difference being that there are four possible states.

(pa+ Aexf "1 ((1-pla- Aeef 7YX+

(-0~ Ao 77! s(a-pa-ar Ao XX g

1+r

-pln

V-X=

Equation (4.6) is simplified to find the distributed generation investment cost.

‘- b'“[(m i ex{%) remh ex{gﬂ 4.7

1+r

where P = corr(1,m),/p(1- pq1- 9 exr{%j[ex{%j - ex;{%ﬂ and

ve —ﬁln[qexp(—n” /Z))+(1— q)exp(—rtL /ﬁ)]

The difference between Equation (4.7) and Equation (4.5) is that the actual probability
p is replaced the probdity p+P. This, however, can result in a vastly different solution.
This is becausP can be viewed as a mathematical adjustment in the probabilities based on
the correlation between profits and distributed generation costs as well as the decision
maker's risk preferences.

In addition to the assumptions that a distributed generation cost of $3.5 Million is
incurred when demand increases (with probalpht®.5), that the risk-aversion coefficient

in any year is $1 Million (this implies thad =11), and the discount rate is 10 percent,

assume that the firm’s profits will be eith®25 or $50 Mlion in any given year (with a
probabilityg=0.5). Equation (4.7) results in a cost of $1.75Hidvl, $2.923 Million, or

$3.153 Million, depending upon whether costs are perfectly correlated, not correlated, or
perfectly negatively correlated with profits. Costs that are highly correlated with profits
act as a hedge against uncertainty because the costs are incurred only when profits are

high (P = -0.4), costs that are uncorrelated reduce to the situation in SectionP4=2Q),(
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and costs that are negatively correlated with profits intensify the negative aspects of
uncertainty because costs are incurred only when profits are Row (0.4). The
dependence of the expected present value cost on the correlation with profits becomes
even greater as the decision-maker becomes more risk averse.

The four state prices in any period can be reduced to two state prices since there are
only two states of demand growth (the two states are: high demand growth/high profits
plus high demand growth/low profits; no demand growth/high profits plus no demand

growth/low profits). The state prices in the perfectly correlated and perfectly negatively

correlated cases agee =[0.0913 08178 andy =[0.8260 0 083] respectively.

4.2.3 Demand Uncertainty and Firm Value Uncertainty (Partially Complete
Markets)

Finally, consider the situation when both demand and the firm’s value are uncertain and
the uncertainty associated with the firm’'s value can be hedged. This is the case of partially
complete markets. Assume that the firm's value follows geometric Brownian motion.
This assumption implies that the state prices are constant over time. A diagram of this
situation is similar to the top of Figure 4-2 with the difference being that the profits can
change over time.

The formulation of the problem is similar to the formulation in Equation (4.6). The
primary difference is that the distributed generation cost in each of the demand states is
determined and then the result is adjusted for uncertainty and discounting using the
appropriate market-based state prices. The recursive structure of the tree at time O is

shown in the lower right part of Figure 4-2.

s ‘l/lﬁ|n[(p+§jexr{_ uvﬁ— Ij{(l_ 0 _EAJeX‘{_ UV;{; Xﬂ )
wzﬁln[(p-ﬁjex{_dvb- IH‘“ ) ﬁje{ o xﬂ @9
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Equation (4.8) can be simplified to:

v -t
oot )

It is important to note that there is a different lower bound on the cost when markets
are complete for the value of the firm. While Equation (4.7) can result in a cost that is
very small when distributed generation costs are highly correlated with the firm's value
and the decision-maker is highly risk averse, the same is not the case here.

To illustrate, assume that the first state price is smaller than the second state price.
Equation (4.9) is minimized whemequalsg, the correlation is 1, ang is large so that
the decision-maker is almost risk-neutral (this is the opposite of the situation in the
previous section where a small reduces the cost). Equation (4.9) can be simplified and

v

>|. That is, the lower bound on the distributed

then solved foiX to result in X =

generation cost depends on the state prices and thus on the market-traded value of the
firm. This suggests that the firm has less exposure when it can hedge its profit risks by

entering into market transactions.

4.3 Comparison of Results

Table 1 compares the results from the sections on expected cost, demand uncertainty
only , and demand and profit uncertainty when markets are incomplete (Sections 4.1,
4.2.1, and 4.2.2). The most surprising result in the table is that, assuming that the
discount rate is the same in all cases, the risk neutral decision maker does not have the
lowest cost. Rather, the lowest cost occurs for a risk-averse decision maker when there is
a positive correlation between profits and costs. This is because costs that are highly
correlated with profits act as a hedge against uncertainty because the costs are incurred

only when profits are high.

46



Table 1. Comparison of Results

Investment Cost State Prices
(Millions) $3.5M Cost | $3.5M Cost
Incurred | Not Incurred
Risk Neutral $2.917 0.4545 0.4545
Risk Averse
Demand Uncertainty Only $2.923 0.4605 0.4486
Demand and Profit Uncertainty $1.754 0.0913 0.8178
(Positively Correlated)
Demand and Profit Uncertainty $3.153 0.8260 0.0830
(Negatively Correlated)
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5. Conclusions and Future Research

This research presented an approach to value investments with uncertain payoffs that is
applicable whether markets are complete or incomplete. The problem was framed within
the context of a discrete-time, discrete-states setting. Results suggest that, given a time-
and state-separable utility function, a decision maker’s buying price for an investment is
approximately equal to the state-price weighted sum of its future payoffs; results are exact
when markets are complete or the utility function is exponential.

The approach is appealing from a variety perspectives. From a finance perspective, it
produces results that are consistent with financial economics when markets are complete
(e.g., Duffie 1992) but it is also applicable when markets are incomplete; state prices in
incomplete markets have a similar definition as state prices in complete markets. From a
decision analysis perspective, it is complementary with other incomplete market results
(e.g., a certain equivalent approach by Smith and Nau 1995 and a “Portfolio Decision
Analysis” approach by Borison 1996), it extends to problems when ity futhction is
exponential but there are pre-existing uncertain payoftsnd it extends to non-
exponential utility function$’> From a real options perspective, it provides a way to
calculate “risk-neutral” probabilities when markets are incomplete and it highlights the
importance of the interaction between options in a new project with pre-existing options in
the portfolio in addition to interactions of options within the same project (Trigeorgis
1996). The approach should appeal to economists because it is approximately marginal
utility based pricing. It should also have intuitive appeal to non-economaistaise one
adjusts for preferences in the state prices by giving a heavier weight to the less desirable
outcomes. The approach may have computational advantages because the state prices can
be estimated without solving a full utility maximization problemédach new investment
that is evaluated.

There are several avenues of future research to pursue. From a theoretical perspective,
results from this work need to be further generalized. First, the results should be extended

to include cases where markets are incomplete but there are more market-traded securities

12 See Example 2.2.
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available than the risk-free asset. Second, there may be multiple approaches to calculating
state prices when markets are incomplete in the same way that there are multiple
approaches to calculating state prices when markets are complete (i.e., the three
approaches are: absence of arbitrage, general equilibrium, and single agent optimality); in
particular, there may be an approach that does not necessitate the use of a utility function.
Third, the results can be generalized to include utility functions that are not time- and
state-separable. Fourth, the results can be employed within a game theoretic framework
to make investment decisions when there is both competition and unceftaffittyh, the

results can be developed in a continuous time seéfting.

From an empirical perspective, the usefulness of the results of this research could be
increased. This will baccomplished in a variety of ways. First, a set of guidelines should
be developed to bound the level of error associated with non-exponential utility functions
in incomplete markets. This research suggests that the error is small but it does not
explicitly identify how small. Second, there may be computational advantages with this
approach because the sate prices are estimated without solving ditfutihakimization
problem for each new investment that is evaluated. These advantages should be verified.
Third, the theory needs to be applied to real problems to demonstrate its applicability; a
promising area is the field of real options. Problems with the option to wait, to invest
incrementally, to expand or contract operating scale, to abandon investment, to adjust
inputs or outputs, or to have future growth opportunities should be evaluated. While
these types of problems occur within a wide range of industries, the use of this research in
evaluating future growth options will be of particular interest to groups such as venture
capitalists and R&D departments because they face high uncertainty and have incomplete
markets. Finally, the results need to be simplified and then communicated in a manner that

facilitates their usefulness to a broad range of decision makers.

13 See Example 2.3 and Example 3.4.
14 This area of research was indentified by Kevin Zhu.
15 These results are already well established when markets are complete.
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6. Appendix: Proofs

Proof for Corollary 2.1: The optimality condition, the fact that the utility function is

strictly increasing, and the decision maker’s ability to purchase any size increments of

(Acy,,Aw;) subject to budget constraints imply that(¢,,W,) is the solution to the

problem  max  U(&,W,) whereY is the budget-feasible set. Consider two cases.
AG, Aw, LY

Case 1 Incomplete Markets. There is no opportunity to adjust period 1 consumption
state by state when markets are incomplete and there is only the opportunity for risk-free

borrowing and lending. ThusAw, =[Aw; Aw; ... Aw] with Aw,OR and the

budget constraint id\c, + Aw, <0. The first order condition for optimality results in

dAJ =A and dAJ
a6, ow,

=g . These two equations are solved forand combined to

result in Corollary 2.1.

Case 2 Complete Markets. There is the opportunity to adjust period 1 consumption

state by state when markets are complete. TBug=[Aw; Aw ... Aw’]| and the

budget constraint isAc, +¢, (Aw, <0 where the state-price vector i, OR?, with
wlz[wi w? o t,uf]. The first order condition for optimality results%:}\ and

Q =\A for 1<i<S. Summing over al,

! A= A=A since the price of
oW,

~

1

receiving one unit of consumption in every state in the future is equal to the price of a
risk-free asset (i.eq, 1 =y?). These two equations are solved foand combined to
result in Corollary 2.1.

Proof for Corollary 2.2: The budget constraint when markets are incomplete is that

Ac, +@iAw, <0. This budget constraint is satisfied with equality since thigyut
function is strictly increasing so thatw, = -Ac,/ 2.

Proof for Corollary 2.3: When markets are complete, period 1 wealth is changed state

by state by re-optimizing so as to exactly offset the change in wealth due to the net payoff.
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This satisfies Theorem 2.1, sincd(c, +0,w, +0)=U(g,w,), and the optimality
condition, sinceJ(c,,w,) was maximized prior to the addition of the net payoffs.

Proof for Corollary 2.4: Assume that Ac,=0. Corollary 2.1 requires that
Wik, () =u,'(w,) @ for the initial condition andy?iu,'(g)=u,'(W,)1 with the net
payoffs so thatu,'(w,) 1 = u,'(W,) (1. Theorem 2.1 requires that(w, )1 = u,(W,)1.

These two equations are satisfied simultaneously only when the utility function is linear or

exponential.  Conversely, assume tHa{z,z )= u(z)+u(z), where u(z) is

S
arbitrary  and ul(zl)El:—Zaie'zV”. Corollary 2.1  requires that
1=1

Y, (6) = (=1/ p)u,(w,) 1 for the initial condition. Multiplying by and addingu,(c,)

results inuy(c) - pwiw'(G) = U G w,). Likewise, (&)~ pwiw'(%) = UGW,) for
the net payoff. —Combining these two equations using Theorem 2.1 results in
U(%) - PYiu' ()= w(¢)— oyl y (g . ¢ must equalt, since u,(z) has an arbitrary
form so that Ac, equals 0.

Proof for Corollary 3.1: Two cases need to be considered: incomplete markets and
complete markets. The objective function in both cases is to maximize utility subject to

budget constraints; i.e., mai(¢) whereY is the budget-feasible set. The difference

Acly

between the two cases comes in the budget-feasib¥e séfthen markets are complete,
there is a state price for every time and stgtéJR’,) so that the only budget constraint
is Aclg <0.

In contrast, there are multiple budget constraints when markets are incomplete. In fact,
there are as many budget constraints as there are possible combinatkw'ss ofhe

number of possible combinations&dé’s equals the number of unique branches at fime

Each constraint if\c|{s}. [y° <0 whereAc|{s}. OR™™ is the change in consumption
when the patH{s}_ is taken from period 0 t& andy° OR'" is the vector of risk-free

discount factors for each period.

51



Case 1 Incomplete Markets. Select a partition at timaf Pt|{s}t. Given that all

constraints are binding (which is true based on Assumption 3.1), the first order condition

for optimality at timet is that the marginal utility of consumption plus the change in wealth

in state {s}t equals the risk-free rate at tihemultiplied by the sum of the lagrange

multipliers associated with all constraints in partitiol®|{s}, . That s,

% :l’U?ZPHS} A'. Similarly, at timet'>t in partition R|{s} , the marginal utility in
Ct t th>rt

state{s}, given statefs] equals the risk-free rate at timemultiplied by the sum of the

lagrange multipliers associated with all constraints in the “sub-partitifs},. O R|{ g, .

- dJ 0 | - - - g
Thatis, — s = Za-l{s}t-,{s}tA . Since this is true for all sub-partitioms|{s}., the

PREECIRG
results can be summed so that%ﬂzwﬁz A'.  Combining the first order
0ét't t Rish

conditions from time and timet’ result in Corollary 3.1.
Case 2 Complete Markets. There is the opportunity to adjust consumption state by

state when markets are complete. Select a partition at @ih&|{s} . The first order

condition for optimality at time is = t,ufsh}\ . Likewise, the first order condition for

56}{ S}t

o s,

—a v =Y, A.
oY

optimality at timet' for a particular state in partitioR|{s} is
. . . odU TS :
The sum over all states at titidn partition R|{s}, is —rg A =A@ AL The right
0ét't t
hand side of the equation equals the risk-free rate between ttiamgdt’ in partition
RI{s}, multiplied by the state price at tintegiven {s} . That is, T o=y, teh

Substituting for this and then combining conditions at tigedt’ results in Corollary 3.1.
Proof for Corollary 3.2: When markets are incomplete, there is a budget constraint

for each path taken. The discounted change in consumption for any gjathhat is

taken must equal zero, SO that
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Ac, +PS.AC + WS ACHT: + B, A S 2 + g0 A" =0 since the decision

maker only has the opportunity to borrow or lend at the risk-free discount rate in

incomplete markets. This rearranges to

sr-1f{str_, =k st
AC?T'{S}H = —[ACT;] — [+ [Ag j - [Acfl j - [ A6 j where ;s the risk-free

0 0 0
l‘)UT—l,T l‘)UZ,T l‘)Ul,T 0,T

discount rate between periodandT. The right hand side is independent of the final state
S since the change in consumption in the final state must be constant given the previous
state in order to fully satisfy the budget constraint.

Proof for Corollary 3.3: When markets are complete, peribdconsumption is

changed state by state so that the changes in consumption due to the net payoffs are

exactly offset. This satisfies Theorem 3.1, sitgge +0)=U(c), and the optimality

condition sinceJ(c) was maximized without the net payoffs.
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7. Appendix: Partitions and Time- and State-Separable Utility

Functions

One issue associated with the results in this research is whether a time- and state-
separable utility function is capable of capturing the information about the resolution of
uncertainty in a multi-period setting. This appendix demonstrates that it is. This claim is
substantiated through the use of an example based on an expected utility analysis.

A decision maker is offered a project that has equal chances of paying $1.0 Million or
$0.3 Million in period 1 and in period 2. The decision maker has an expected utility
function and has $0 of current wealth. Figure 7-1 illustrates three ways that the time
resolution of the uncertainty associated with these payoffs can be interpreted: (A) all
uncertainty is resolved immediately; (B) all uncertainty is resolved in period 1; and (C) the
uncertainty is resolved sequentially in period 1 and in period 2. The ovals correspond to
the payoffs and the numbers above the lines correspond to the probability of the payoffs
occurring for these three interpretations.

Period Period Period|Period Period Period|Period Period Period
0 1 2 0 1 2 0 1 2

O G,
1/2

1/2

(A) Immediate Resolution] (B) Period 1 Resolution|| (C) Sequential Resolution

Figure 7-1. Project payoffs and resolution of uncertainty with expected utility.
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The figure makes it apparent that the state spaces differ in each of the three case. Since
there can be uncertainty in period 0, the dependence of future states on the outcome of

period O is made explicit only where necessary (i.e., in case A). The state spaces are
Sa = {10, 2, 1%, 212, 31%.3. 213, 3, S5 = {10 11, 2, Ll1, 212} and
Sa={1.1,2, 1|1, 2|1, 1|2, 2|2. Now the question is whether or not a time- and
state-separable utility function captures this difference.

If one calculates the utility of theayoffsof these three formulations, then the utility of
A is U, =4up(0)+u(10+u(10]+4[u( 9+ y( 03+ y( 0F, the utiity of B is
Us = (0) +3[u(10 + u(10]+4[y( 03+ y( 0F and the utiity of C is

U = t(0) +3[u(10+4[u(10+ u( 03]+ 4[ u( 03+1[ u( 1p+ y( O} This
approach results in identical utilities independent of the form of the utility function (i.e.,
U,=U,=U_).

The problem with such an approach, however, is that it evaluates the utility of the
payoffs not the utility of consumptio®pecifically, it fails to recognize a decision maker’s
opportunity to optimize inter-temporal consumption by borrowing and lending. The
evaluation should be based consumptionas depicted in Figure 7-2, where t®in A,

B, and C are not necessarily the same. Subscripts refer to time and superscripts refer to
states?®

% The time subscripts on the state superscripts are omitted for notation simplicity.

55



Period Period Period|Period Period Period|Period Period Period
0 1 2 0 1 2 0 1 2

1 ~ 1
D——E——€D

(A) Immediate Resolution] (B) Period 1 Resolution|| (C) Sequential Resolution

Figure 7-2. Consumption and resolution of uncertainty with expected utility.

The utility of these three formulations is determined by maximizing expected utility

subject to the income constraints, as presented in Table 7.1. It is assumed that the
decision maker can borrow and lend at the risk-free rate, whr@nd /2 correspond to

the risk-free discount rate factors between period 0 and periods 1 and 2. Notice that that
there is a change in some of the consumption variables as well as the constraints for the

three formulations.
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Table 7.2. Utility and constraints on formulations A, B, and C.

Expected Utility

Constraints

3[w(@) + u(d)+ u( ¢
A #3[u(€) + u(€?)+ y( &)]

G gt + gt < w10+ w310
G HYIG + PSP <03+ 503

(co) + 2 u( )+ u( &)] GG + P3G < @l0+¢310

B +1[u(€) +u( )] G +PIC + PG <yl0.3+y203
GG +Y5G S PrL0+¢310

(e +3u(c)+2{u( &)+ + o )] | G WG FUaC <uiLOryL0S

G +YSC + oG < 0.3+310
G +YSC +Y5c2 <?0.3+y303

This example is made concrete by assuming that the decision maker’s utility function is
U =In(z)+In(z)+In(z) and that the risk-free discount rate is O percent. Results from
an optimization show thdtl, >U. >U,."" That is, each of the three interpretations of the

way uncertainty is resolved result in different utilities using an expected utility formulation.

This confirms that an expected utility formulation can differentiate the way uncertainty is

resolved into the analysis.

7 The exact results are tHdt = -3.02,U, = -3.26,U. = -3.10.
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