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Abstract

An investment’s price is the state-price weighted sum of its future payoffs when

markets are complete.  This is a well established fact in the financial economics field.  The

investment valuation problem in incomplete markets, however, has attracted the interest of

several additional fields, including decision analysis and real options, and has led to a

variety of valuation approaches.  The approaches differ in their treatment of the investor’s

existing portfolio, market opportunities to hedge risks, the ability to re-optimize after

adding a new investment to one’s portfolio, and the investment’s divisibility.

This research develops a single valuation approach that produces results consistent with

financial economics when markets are complete but is also applicable when the investment

is not divisible and the decision maker can only borrow and lend at the risk-free discount

rate (markets are incomplete).  Results suggest that, given a time- and state-separable

utility function, a decision maker’s buying price for an investment is approximately equal

to the state-price weighted sum of its future payoffs (see Theorems 2.2 and 3.2); results

are exact when markets are complete or the utility function is exponential.  State prices in

incomplete markets have a similar definition as state prices in complete markets in that

they are approximately marginal utility based prices.  The approach may have

computational advantages because the prices can be estimated without solving a full utility

maximization problem for each new investment that is evaluated.

The most important application of this work will be in the evaluation of projects that

are indivisible and have managerial flexibility in markets that are incomplete (i.e., an

important category of real option problems).  A comprehensive example of an electrical

utility’s use of distributed generation to provide system capacity (rather than the typical

approach of upgrading transmission and distribution facilities) illustrates how to apply the

method.  The example shows that the correlation between a new project’s payoffs and the

existing portfolio has a large effect on the investment decision.
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1. Introduction

1.1 Background

Identifying better ways to evaluate investments is an activity in which there is

widespread interest.  It is of interest to individuals with very limited resources as well as to

governments with vast financial resources.  Individuals face investment problems when

purchasing a washing machine, when deciding whether to invest in a college education,

when investing in the stock market, and when buying a home.  Firms face investment

problems when designing their research and development programs, when introducing

new products, and when making bet-the-company type decisions.  Governments face

investment problems when designing welfare programs, when supporting the development

of new technologies, and when deciding whether or not to enter into an international

confrontation.

This interest in investment problems has attracted the attention of several fields of

research and has led to a variety of valuation theories and approaches.  Two of the most

important fields are financial economics and decision analysis/decision sciences.  A third

that is growing in importance is the field of real options.

One issue that tends to distinguish these three fields is their focus.  As illustrated in

Figure 1.1, financial economics focuses on the market.  It provides a market-based

valuation of an investment by examining all investment opportunities that are available in

the market.  Decision analysis focuses on the decision maker.  Little thought is typically

given to the market and how it affects the decision.  Real options focuses on the

investment.  Some applications of real options are concerned with how the investment

interacts with the market while others are only concerned about the decision maker.  In

some ways, it can be viewed as a field that is in between financial economics and decision

analysis.
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Figure 1-1.  Focus of various fields when evaluating investments.

This chapter provides a brief discussion of these fields with a focus on some of the

issues that will apply to the rest of this work.

1.2 Financial Economics

The existence of state prices is the unifying principle in asset pricing in financial

markets.  If state prices exist, there is one price for each state of the world at each date.

State prices take into account uncertainty and discounting over time.  A state price is the

current price of a security that pays off $1 if a particular state occurs in the future and

pays off $0 in all other states.  The price of any security is determined according to these

state prices and the security’s cash flows.  Security price is the state-price weighted sum of

its future cash flows.  That is, one multiplies the state price times the security’s cash flow

for each state and for each date and then sums the results.

Determination of state prices is based on the constraints placed on asset prices.  The

three basic constraints on asset prices are the absence of arbitrage (i.e., there is no way to

lock in a risk-free profit by simultaneously entering into two or more market transactions),

market equilibrium, and single-agent optimality.  State prices exist when any of these three

constraints is satisfied.  That is, the absence of arbitrage, market equilibrium, and single-

agent optimality each imply the existence of a set of state prices and complete markets

(Duffie 1992).  The following subsections describe how to determine state prices using

these three constraints.
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1.2.1 Valuation by Arbitrage

Valuation by arbitrage determines the prices of derivative securities based on the prices

of other securities that are traded in the market.  (A derivative security is a security whose

value depends on the values of other more basic underlying variables).  The arbitrage

approach takes the price processes of a set of market-traded securities as given,

demonstrates that they are free from arbitrage, and then uses this arbitrage-free set of

prices to price the derivative security.

The best known option pricing formulas based on arbitrage are those developed by

Black and Scholes (1973) and the binomial option pricing method developed by Cox,

Ross, and Rubinstein (1979).  The Black-Scholes approach prices a stock option by

creating a dynamically hedged portfolio that consists of the underlying stock and a risk-

free asset.  The portfolio is selected so that its cash flow is identical to the option’s cash

flow in every state.  Securities with identical cash flows have the same price to avoid

arbitrage.  Thus, the option’s price is identical to the portfolio’s price.

The binomial option pricing approach (1) generates the distribution of the future stock

price based only on the risk-free rate and the stock’s volatility (the risk premium of the

stock is irrelevant); (2) calculates the expected value of the stock price minus the exercise

price in the range where this value is positive using a set of “risk-neutral” probabilities;

and (3) discounts the result at the risk-free rate.  The state prices are identical to the “risk-

neutral” probabilities times the risk-free discount rate.

Harrison and Kreps (1979) demonstrate that martingales provide a direct way to price

derivative assets based on these prices.  Y is a martingale if the expected value of Y at any

future time given the current available information equals the current value of Y.  More

precisely, a process Y Y t t T= =1 6< A; , ,...,0 1  is a martingale adapted to an information

structure F t Tt= =F ; , ,...,0 1; @  if E Y s Y tt1 6 1 6|F =  for all s t≥  where E t⋅|F  is the

expectation conditional on Ft .  The probabilities in the expectation that make Y a

martingale are the state prices normalized by the risk-free discount rate.

The necessary and sufficient condition for price processes not to admit arbitrage

opportunities is that they are related to martingales through a normalization and change of
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probability (Duffie 1992 and Huang and Litzenberger 1988).  What is the normalization

that makes a contingent claim (e.g., an option on a stock) into a martingale?  Several

authors have shown that any contingent claim on an asset can be priced in a world with

systematic risk by replacing its actual growth rate with a certainty-equivalent rate (i.e., its

risk-free rate) and then behaving as if the world were risk neutral (Cox and Ross 1976,

Constantinides 1978, and Cox, Ingersoll, and Ross 1985).  That is, the normalization in a

market context is that a non-dividend paying stock earns at the risk-free rate (regardless of

its risk), the expectation of the normalized stock price minus the exercise price is taken as

if the agent is risk-neutral, and the result is discounted at the risk-free discount rate.  In

this case, the state prices are identical to the “risk-neutral” probabilities times the risk-free

discount rate.

State prices in a two-period world can be determined using an arbitrage approach as

follows.  Suppose that the number of linearly independent securities (N) equals the number

of states (S).  The period 1 state-price vector is ψ 1 = ψ ψ ψ1
1

1
2

1... S T
; the period 0

security-price vector is q = q q qN

T

1 2 ... ; and the period 1 security cash flow matrix

D is an N by S matrix where element Dij  is the cash flow of security i in state j.  A system

that is free from arbitrage requires that q D= ψ 1 .  D is invertible because the securities

are linearly independent and markets are complete (i.e., S = N).  Thus, the state price

vector equals the inverse of the cash flow matrix times the period 0 security prices, or

ψ 1 = −D q1 .

1.2.2 Equilibrium Valuation

While valuation by arbitrage is the most widely used approach to pricing derivative

securities in financial markets, it is not the only approach.  Another approach is

equilibrium valuation.  This approach was pioneered by Arrow (1964) and Debreu (1959).

Rubinstein (1976) demonstrated how equilibrium valuation is linked to valuation by

arbitrage.

Equilibrium valuation in a pure trade economy with complete markets begins with a

group of agents.  Each agent has an initial endowment and a strictly increasing, strictly
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concave, differentiable utility function, and optimizes consumption using a trading strategy

such that the market is in equilibrium.  The associated equilibrium allocation is Pareto

optimal.  This means that there is no other feasible allocation that makes all agents at least

as well off and at least one agent better off.  Since there is an equilibrium that is Pareto

optimal, there is no arbitrage, and therefore there is a set of state prices (Duffie 1992).

The equilibrium approach differs from the arbitrage approach in that no prices are given

initially.  Rather, all prices in the economy are determined through an economic

optimization.  The result of the optimization is a set of state prices based on marginal

utilities.

Huang and Litzenberger (1988) show that when the allocation of state contingent

claims is efficient and individuals have time-additive, state-independent, strictly increasing,

strictly concave, and differentiable utility functions, state prices are determined as if there

were a single individual in the economy endowed with the aggregate endowment.  State

prices are the set of prices that make the representative agent’s initial endowment the

optimal consumption choice.

This problem is solved by maximizing the representative agent’s utility maximization

problem subject to its endowment, e e R RS
0 0

1, ; ,e e1 1∈ ∈+ += B .  The first order necessary

conditions of the maximization problem Max u z
z0

0 0
,z

p u z
1

1 11 6 1 6+ ⋅  subject to the constraint

that ψ ψ0 0 0 0z e+ ⋅ ≤ + ⋅ψψ ψψ1 1 1 1z e  along with market clearing conditions require that

ψ
ψ

1

0

1 1

0 0

i i ip u e

u e
=

'

'

3 8
1 6  for 1≤ ≤i S  (p is the probability vector p = p p pS1 2

�  where pi

is the probability that state i will occur).  Summing the first order necessary conditions

over all i and treating ψ 0  as the numeraire results in the ratio of the period 1 expected

marginal utility divided by the period 0 marginal utility being equal to the sum of state

prices.  That is, ψψ 1
1 11⋅ =

⋅p u e'

'

1 6
1 6u e0 0

.  The sum of state prices equals the price of a risk-free

asset (i.e., that asset has a cash flow of $1 in all states in period 1), so that ψψ 1 1⋅ = ψ 1
0 ,

where ψ 1
0  is the risk-free discount rate.  This and the previous equation are substituted
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into the first order necessary conditions to obtain the set of state prices, namely that

ψ ψ1 1
0 1 1i

i ip u e
=

⋅
'

'

3 8
1 6p u e1 1

 for 1≤ ≤i S .  The set of 
p u ei i

1 1'

'

3 8
1 6p u e⋅ 1 1

 for 1≤ ≤i S  are interpreted as

the “risk-neutral” probabilities because 
p u ei i

i

S
1 1

1

1
'

'

3 8
1 6p u e⋅

=
=
∑

1 1

.  Thus, the state prices equal the

“risk-neutral” probabilities times the risk-free discount rate.

1.2.3 Valuation by Single-Agent Optimality

The least common approach to determine state prices is through the use of single agent

optimality.  This approach determines state prices by examining individual consumer

behavior.  It turns out that this may be the most important approach from the perspective

of this research.

Given that an agent with a strictly increasing utility function is consuming optimally and

markets are complete, the ratio of two state prices equals the ratio of the respective

marginal utilities.1  The mechanics and results of this approach are very similar to the

equilibrium valuation approach.  The primary difference in the result is that the individual

agent’s utility function replaces the representative agent’s utility function and individual

agent consumption replaces market endowment in the state prices.

The consumer’s utility maximization problem can be formulated by allowing the

consumer to purchase some portfolio of market-traded securities that have state-

contingent payoffs that result in the optimal consumption over time.  Alternatively, the

problem can be formulated by taking the set of state prices as given2 and then allowing the

consumer to optimize state-by-state consumption; that is the approach taken here.

The first order conditions for optimality for the problem Max U c
c0

0
,

,
c

c
1

11 6  subject to the

constraint that  c e0 0+ ⋅ ≤ + ⋅ψψ ψψ1 1 1 1c e  are 
∂

∂
λU

c01 6 =  and 
∂

∂
ψ λU

ci

i

1

13 8
=  for 1≤ ≤i S .

                                               
1 Luenberger (1997) shows that a similar result can be obtained when markets are incomplete as long as

the investments are infinitely divisible.
2 The prices could be calculated using valuation by arbitrage.
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Summing over all i, 
∂

∂
λ ψ λU

c1
11 = 1 =

1 6 ⋅ ⋅ψψ 1
0 .  The binding budget constraint leads to the

result that ψ ψ

∂
∂
∂

∂

1 1
0 1i

i

U

c
=

⋅

3 8

1 6
U
c1

1
.  If the utility function is an additive expected utility as in the

previous section (i.e., U c u c0 0 0,c p u c1 1 11 6 1 6 1 6= + ⋅ ) then the state prices have the same

form as before (i.e., ψ ψ1 1
0 1 1i

i ip u c
=

⋅
'

'

3 8
1 6p u c1 1

).  Once again, the state prices can be interpreted

as the “risk-neutral” probabilities times the risk-free discount rate.

1.3 Real Options

Financial option evaluation methods have more recently been applied to evaluate the

flexibility associated with physical investments.  Some have labeled this extension real

options.  Real option evaluations account for the value of flexibility embedded within

projects.  Like the field of financial option valuation, this is a large and growing field.3

The field of real options is an important one from the perspective of this research

because it represents a field that is between financial economics and decision analysis.  The

field of real options focuses on the investment and how to capture the value of the

flexibility of the investment.

This focus is best illustrated by Dixit and Pindyck (1994).  The authors take two

approaches to evaluating investments.  One is a contingent claims analysis and the other is

a dynamic programming analysis.  The contingent claims analysis, which is essentially the

same as a financial economics options valuation, constructs a risk neutral portfolio and

applies the principle of no arbitrage to value the investment.  The critical assumption

implicit in the contingent claims analysis is that stochastic changes in the investment’s

value are spanned by existing assets in the economy.  This requires that capital markets are

sufficiently complete so that a dynamic portfolio of assets could be constructed whose

price is perfectly correlated with the value of the investment.  This is a crucial point,
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because this assumption is widely made when evaluating real options.  For example, this is

a fundamental assumption in the book Real Options by Trigeorgis (1996).

Dixit and Pindyck value an investment using a dynamic programming approach when

spanning conditions do not exist.  The application of this approach states that, over a short

interval of time, the total expected return of the investment opportunity is equal to its

expected rate of capital appreciation.   According to Dixit and Pindyck (1994, p. 147), a

difficulty of this approach is that “it is based on an arbitrary and constant discount rate.  It

is not clear where this discount rate should come from, or even that it should be constant

over time.”  Dixit and Pindyck (1994, p.152) elaborate on this critical point (with the

emphasis being mine):

“Hence, the contingent claims solution to our investment problem is equivalent
to a dynamic programming solution, under the assumption of risk neutrality (that is
the discount rate [of the dynamic programming approach] is equal to the risk-free
rate).  Thus, whether or not spanning holds, we can obtain a solution to the
investment problem, but without spanning, the solution will be subject to an
assumed discount rate.  In either case, the solution will have the same form, and
the effects of changes [in certain key variables] will likewise be the same.  One
point is worth noting, however.  Without spanning, there is no theory for
determining the ‘correct’ value for the discount rate (unless we make restrictive
assumptions about investors’ or managers’ utility functions).  The CAPM, for
example, would not hold, and so it could not be used to calculate a risk-
adjusted discount rate in the usual way.”

The implication of this is that, while you can use the dynamic programming approach

when markets are incomplete, there is no theoretically correct way to select the correct

discount rate.

1.4 Decision Analysis

The field of decision analysis (and decision sciences) focuses on the decision maker.  A

wide range of theories are captured under this title.  Some of these theories include

expected utility, subjective expected utility, prospect theory, rank-dependent utility, state-

dependent subjective expected utility, etc.  It would be difficult to give an adequate

treatment to all of these theories in this section.

                                                                                                                                       
3 See the bibliography in a recent book on the subject (Dixit and Pindyck, 1994) or Trigeorgis (1996).
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The major point of this section is that all of these theories are united by their focus on

the decision maker.  Whether the theory is normative in that it is intended to suggest how

decisions should be made or whether it is descriptive in that it is intended to describe how

decisions are actually made, the central focus of all of these theories is on the decision

maker.

Two theories are briefly discussed here: expected utility (and subjective expected

utility) and prospect theory.  The expected utility theories have been around the longest

(Bernoulli 1738, and von Neumann and Morgenstern 1944) and are probably still the most

widely used.  Fishburn (1982) presents an excellent summary of the various axiomatic

approaches to arrive at the expected utility theories.  Howard (1992, pp. 33-34) takes

another approach in his articulation of the foundations of decision analysis in five rules of

thought.  While there are a variety of ways the parameters in the expected utility function

can be expressed, a typical one is that the utility of a project with payoffs of x equals

p u w xi i

i

S

0
1

+
=
∑ 3 8 , where pi is the probability of the payoff xi occurring and w0 is initial

wealth.  One wants to determine the certain equivalent CE that makes the decision

maker’s utility with the payoffs the same as the utility with the certain equivalent (i.e.,

u w CE p u w xi i

i

S

0 0
1

+ = +
=
∑1 6 3 8 ).

A second theory that is of particular interest to this research is prospect theory

(Kahneman and Tversky 1979).  Prospect theory was developed in a response to observed

descriptive violations of expected utility theory.  Prospect theory suggested that the

payoffs x be evaluated using a function of the form ϕ p u xi i

i

S

3 8 3 8
=
∑

1

, where ϕ pi3 8  is a

decision weight; future work extended the definition of the decision weight to depend on

other variables as well as whether there was a loss or a gain (Hogarth and Einhorn 1990,

Tversky and Wakker 1995).  While proponents of prospect theory state that the decision

weights are not probabilities, the improved descriptive capability of the inclusion of

decision weights will be seen to be of value later in this research.
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1.5 Method Comparison

To set the stage for the contribution that this research makes, it is important to identify

some of the weaknesses associated with decision analysis as it is typically applied.  As

stated above, it would be difficult to do this for all of these theories.  Fortunately, the

three primary weaknesses identified in the following sections are applicable to essentially

all of the theories.  For this reason, the basis of comparison is expected utility theory.

1.5.1 Expected Utility Results can be Inconsistent with a Market Valuation

First, the valuation results from an expected utility approach are not necessarily

consistent with a financial economics approach.  Consider the following illustration.

Suppose that a risk-averse decision maker is evaluating three projects.  Project X pays x,

which is greater than 0, with probability p else it pays 0 x p p, ; ,0 1−1 6 .  Project Y pays y,

which is greater than 0, with probability 1-p else it pays 0 0 1, ; ,p y p−1 6 .  Project X+Y is

the sum of project X and project Y so that it pays x with probability p and y with

probability 1-p x p y p, ; ,1−1 6 .  Let VX be the value for the financial economics approach

and the certain equivalent for the expected utility approach of project X.  The value of two

projects combined equals the values of the individual projects summed together when

using a financial economics approach, i.e., V V VX Y X Y+ = + .  The certain equivalent of two

projects combined, however, does not necessarily equal the certain equivalents of the

individual projects summed together when using an expected utility approach.

The financial economics approach starts with the assumption of complete markets.

This means that a state-price vector exists. Thus, the state-price weighted sum off the

payoffs for project X is V x xX = ⋅ =0 1 2 1ψ ψ ψ .  Likewise,

V y yY = ⋅ =0 1 2 2ψ ψ ψ  and V x y x yX Y+ = ⋅ = +ψ ψ ψ ψ1 2 1 2 .  This means

that V V VX Y X Y+ = + .

The expected utility approach requires that u w V pu w x p u wX0 0 01+ = + + −1 6 1 6 1 6 1 6  and

u w V pu w p u w yY0 0 01+ = + − +1 6 1 6 1 6 1 6  for projects X and Y.  This means that
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V u pu w x p u w wX = + + − −−1
0 0 011 6 1 6 1 6  and V u pu w p u w y wY = + − + −−1

0 0 011 6 1 6 1 6 .4

Suppose that V V VX Y X Y+ = + .  Substituting for V VX Y+ , adding w0 to both sides, and

taking the utility results in u w V u u pu w x p u wX Y0
1

0 01+ = + + − ++
−1 6 1 6 1 6 1 6=

u pu w p u w y w− + − + −1
0 0 011 6 1 6 1 6 B . The expected utility approach requires that

u w V pu w x p u w yX Y0 0 01+ = + + − ++1 6 1 6 1 6 1 6  for the project X+Y.  The previous equation

simplifies to this only when u A B u A u B+ = +1 6 1 6 1 6 .  This is the case when u is linear and

the decision maker is risk-neutral.  This violates the initial assumption that the decision

maker is risk-averse.  Thus, an expected utility approach for a risk-averse decision maker

cannot obtain a value for all three of these projects that is consistent with a financial

economics approach.

1.5.2 Expected Utility Theory Lacks a Temporal Element

Second, an expected utility formulation lacks a temporal element although the

parameters used in the analysis are often from different time periods.  Specifically, the

expected utility analysis evaluates the expected utility of wealth (at the time when the

decision is made) plus the project’s payoff (at the time when the uncertainty is resolved).

A difficulty with this formulation is that the existence of uncertainty in any decision

problem requires that there is some period of time between when the decision is made and

the uncertainty is resolved (Pope 1985).  For example, if the decision is made in period 0

and the uncertainty is resolved in period 1, wealth is taken at period 0 but the project’s

payoff is taken at period 1.

One solution to this problem is to take wealth and payoff from the same period with the

appropriate period being the time when the payoff occurs.  That is, wealth is taken from

period 1 rather than period 0.  An implication of this is that wealth in the expected utility

formulation is no longer certain but can vary.  The payoff itself is no longer the key factor.

Rather, it is the covariance between wealth and payoff that is crucial.

                                               
4 It is assumed that the decision maker’s utility function is invertible.
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Kasanen and Trigeorgis (1995) formulate a decision analytic problem using this

approach of having wealth and the payoffs occur at the same time.  They assume that there

exists a utility function for the whole economy.  They then take a first order Taylor series

expansion of their formulation around market wealth.  The result they derive is the same

as one would obtain by taking the state prices defined using an equilibrium approach

(section 1.2.3), replacing endowment with wealth, calculating the state-price weighted

sum of the payoffs, and applying the definition of covariance.  That is, they show that an

expected utility framework can be linked to finance theory by allowing wealth to vary.

1.5.3 Expected Utility Theory Does Not Allow for Prior Consumption Changes

Third, expected utility theory does not allow for changes in prior consumption that can

occur when a certain equivalent is given rather than a project.  That is, offering a certain

equivalent for the project’s payoffs in isolation from other decisions can alter decisions

that must be made before the uncertainty is resolved.  Matheson and Howard (1989, p.

44) recognize this when they state that “the approach [of calculating the certain equivalent

of the project] is appropriate when there is no opportunity to utilize the information about

the outcomes as it is revealed.”  Likewise, Keeney and Raiffa (1976, p. 512) point out that

the time resolution of uncertainty affects earlier acts, and Becker and Sarin (1989) and

LaValle (1989, 1992) state that decision trees cannot be simplified by certain equivalent

substitutions without potentially affecting preferences for initial acts.  Viewed from an

economics perspective, Mossin (1969), Spence and Zeckhauser (1972), and Dreze and

Modigliani (1972) observe that induced preference for income will not in general satisfy

the von Neumann-Morgenstern axioms even if preference for consumption has an

expected utility representation.

In response to some of these observations, Kreps and Porteus (1978) propose a

generalization of von Neumann-Morgenstern utility called temporal von Neumann-

Morgenstern preference.  Kreps and Porteus (1979a) derive the necessary and sufficient

conditions for induced preference to satisfy the von Neumann-Morgenstern axioms in a

two-period model and show that they are quite stringent.  In a consumption-savings

problem, the conditions translate into a utility function of the form
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U c c f c g c h c c0 1 0 0 0 1,1 6 1 6 1 6 1 6= + + , a special case of which is a utility function that is

exponential in period 1: U c c u c c0 1 0 0 1, exp1 6 1 6 1 6= − −λ .  Smith and Nau (1995) extend this

result to partially complete markets with more than two time periods with similar results

(i.e., there is a time-separable utility function that is exponential in every time period

except period 0).

1.6 Objective

The objective of this research is to develop a valuation approach that is theoretically

consistent whether markets are complete or incomplete and investments are not infinitely

divisible.  The only things that will change depending upon market conditions are the

parameter inputs into the valuation framework.  That is, the goal is to provide an

evaluation framework that produces results that are identical to a financial economics

approach when markets are complete but is applicable when markets are incomplete.

The outline of the report is as follows.  Chapter 2 develops the approach in a discrete

time, two-period world.  Chapter 3 extends the results to multiple time periods.  Chapter 4

illustrates how to apply the method to a real world problem.  Conclusions and

recommendations for further research are presented in Chapter 5.  Proofs are presented in

Chapter 6 and a discussion about time- and state-separable utility functions is given in

Chapter 7.
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2. Single-Period Model

This chapter develops a single valuation approach applicable in complete and

incomplete markets in a discrete time, single-period setting.  Assumptions and definitions

are presented in Section 2.1.  A decision maker’s buying price for an investment with

uncertain payoffs satisfies the condition that utility with the net payoffs (see Definition

2.2) equals utility without the net payoffs (Section 2.2) and the condition that utility

cannot be improved by changing consumption or market transactions (Section 2.3).  An

example is included in Section 2.2 about how this approach eliminates the need to

separately define a “buying price” and a “selling price.”  Section 2.4 introduces the

assumption of a time- and state-separable utility function and demonstrates that the

decision maker’s buying price for the investment is approximately equal to the state-price

weighted sum of its payoffs; results are exact when markets are complete or the utility

function is additive exponential.  Exponential and logarithmic examples are included.

2.1 Setting

This section assumes a discrete time, single-period setting.  Period 0 has no uncertainty

and period 1 has a finite set, 1 2, , ..., S; @ , states of uncertainty, one of which will be

revealed to be true in period 1.  Complete markets means that a unique state-price vector

exists with a price for all states (Duffie 1992).  Incomplete markets means that the only

asset available is one that allows risk-free borrowing and lending.  Both types of markets

allow for the purchase of infinitely divisible assets.  All vectors in this section have S

elements unless specifically noted and are printed in bold type.  z∈RS  means that z has S

elements so that z = z z zS1 2 ...  and RS  means that there are no sign restrictions on

the elements of z; z∈ +RS  means that every element of z is non-negative; and z∈ ++RS

means that every element of z is strictly positive.  Subscripts refer to times and

superscripts refer to states.

Definition 2.1:  S R0
1∈  is the period 0 price of an investment that has period 1 payoffs

of x1 ∈RS .  Uncertainty is resolved in period 1 and there are no sign restrictions on the

investment price or its payoffs.  S0 may be known or unknown.  The objective of this work
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is to either find S0 if it is unknown or to determine if the investment should be made if it is

known.

Definition 2.2:  B R1
1∈  is the decision maker’s period 1 buying price for the

investment’s period 1 payoffs x1.  It is the amount that the decision maker is willing to pay

in period 1 in order to receive the payoff vector x1.  This definition is made more precise in

Theorem 2.1.  The net payoffs are the payoffs minus the period 1 buying price; i.e.,

x1 1− ∈B RS
1 .  The period 0 buying price equals the period 1 buying price discounted at

the risk-free rate since the period 1 buying price is a certain cash flow; i.e., B B0 1
0

1= ψ ,

where ψ 1
0  is the risk-free discount factor (0 superscript) between period 0 and period 1 (1

subscript).  The decision maker is better off buying the investment if the price is less than

the buying price; i.e., S B0 0< .  The price does not have to equal the buying price in

incomplete markets.

Definition 2.3:  ∆c R0
1∈  and ∆w1 ∈RS  are the changes in period 0 consumption and

period 1 wealth due to re-optimization after the net payoffs are added.  For example,

suppose that an initial optimization states that optimal wealth in period 1 state i is wi
1 .

The addition of the investment's payoff in state i as well as the buying price for the

investment changes this to w x Bi i
1 1 1+ − .  The decision maker then re-optimizes and the

new wealth is w x B wi i i
1 1 1 1+ − + ∆ .

Assumption 2.1:  The decision maker has a strictly increasing utility function that maps

period 0 consumption and period 1, state-dependent wealth to a real number.

U R R RS: + +× →  where U U z= 0, z11 6 .  z R0
1∈ +  is period 0 consumption and z1 ∈ +RS  is

period 1, state-dependent wealth. A solution exists to the utility maximization problem,

max ,
,z

U z
0

0
z

z
1

11 6 , where z0,z11 6  is budget-feasible.  A solution also exists when any finite

uncertain payoff is offered to the decision maker.

Assumption 2.2:  As illustrated in Panel 0 of Figure 2-1, the decision maker begins

with an initial wealth w0 and possibly a set of other pre-existing uncertain payoffs

summarized by X1 ∈RS ; note that X1 is not the same as x1.  The decision maker



16

maximizes utility given these initial conditions prior to adding the net payoffs.  The result

is that the optimal period 0 consumption/period 1 wealth pair is c0,w11 6  before the net

payoffs are added.  The decision maker then adds in the net payoffs and re-optimizes with

the result that the optimal period 0 consumption/period 1 wealth pair is � , �c0 w11 6 , where

�c c c0 0 0= + ∆  and �w w w x1 1 1 1 1= + + −∆ B1 .

X1
1

X1
2

�

X1
S

c0

c0+∆c0

Optimize
Consumption/

Wealth

Period 0 Period 1

Add Net Payoffs
and

Re-optimize

Initial Wealth/
Pre-existing

Uncertain Payoffs

w1
1

w1
2

�

w1
S

w1
1 +∆ w1

1 + x1
1 -B1

w1
2 +∆ w1

2 + x1
2 -B1

�

w1
S +∆ w1

S + x1
S -B1

w00

1

2

Figure 2-1.  Initial condition and optimal cons./wealth with and without net payoffs.

2.2 Indifference Condition

Two conditions must be satisfied in order for B1 to be the buying price of x1.  First, the

decision maker’s utility with the net payoffs must be the same as the decision maker’s

utility without the net payoffs.  Second, the decision maker cannot improve utility by

changing consumption or market transactions.  The first condition is developed in this

section and the implications of the second condition are developed in Section 2.3.
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Theorem 2.1:  If B1 is the period 1 buying price for the payoffs x1 then the utility of the

original optimal consumption/wealth pair plus the net payoffs plus changes in

consumption/wealth due to re-optimization (Panel 2 of Figure 2-1) equals the utility of the

original consumption/wealth pair (Panel 1 of Figure 2-1).

U c U c� , � ,0 0w w1 11 6 1 6= (2.1)

where �c c c0 0 0= + ∆  and �w w w x1 1 1 1 1= + + −∆ B1 .

Theorem 2.1 differs from a typical expected utility approach in four ways.  First, there

are no constraints on the utility function’s form or the separability of the arguments.

Second, wealth occurs in period 1 and can be state-dependent.  Third, the decision maker

can re-optimize after the net payoffs are added.  Fourth, all changes to the utility

function’s arguments occur on one side of the equation by adding the payoffs, subtracting

the buying price, and allowing the decision maker to re-optimize.  This fourth point is

attractive because there is no need to formulate separate problems depending upon

whether the decision maker is “buying” or “selling” the investment; all problems are

formulated as if the investment has been purchased.  Consider the following example.

Example 2.1:  “Buy Investment.”  A decision maker is deciding whether or not to pay

$26K in period 0 for an investment that has period 1 payoffs of $20K or $40K.  Without

the investment, optimal period 0 consumption is $10K and period 1 wealth will be $100K

in all states.  Thus, w1 = 100 100  and x1 = 20 40 .  As shown in the left side of

Figure 2-2, Theorem 2.1 requires that U c w B w B10 120 1400 1
1

1 1
2

1+ + − + −∆ ∆ ∆, ,3 8  =

U(10,100,100).  The decision maker will be better off to “buy” the investment if

$26K 1
0< ψ B1, where ψ 1

0  is the risk-free discount factor between period 0 and period 1.

“Sell Investment.”  Conversely, assume a decision maker owns an investment that will

pay off either $20K or $40K in period 1 in addition to other period 0 wealth.  The decision

maker has been offered $26K in period 0 for the investment and is deciding whether or not

to accept the offer.  After optimizing (but before calculating the buying price for the

payoffs), the decision maker decides that optimal period 0 consumption is $10K and

period 1 wealth will be $120K or $140K.  Thus, w1 = 120 140  and x1 = − −20 40 .

As shown in the right side of Figure 2-2, Theorem 2.1 requires that
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U c w B w B U10 100 100 10 120 1400 1
1

1 1
2

1+ + − + − =∆ ∆ ∆, , , ,3 8 1 6 .  The decision maker will be

better off to “sell” the investment if − <$26K 1
0ψ B1  (i.e., if $26K - 1

0> ψ B1).

10

10 +∆c0

100

100

120+∆w1
1  -B1

140+∆w1
2 -B1

10

10 +∆c0

Original c0/w1

Period 0 Period 1

Original c0/w1

+ Net Payoffs
+ Re-optimization

Period 0 Period 1

“Buy Investment”
“Sell Investment”

(i.e., buy negative investment)

120

140

100+∆w1
1  -B1

100+∆w1
2 -B1

Figure 2-2.  Optimal consumption/wealth with and without net payoffs (Example 2.1).

2.3 Optimality Condition

The second condition that must be satisfied when there is an inter-temporal component

to the utility function (i.e., there exists utility associated with period 0 consumption) or

when markets are complete is that the decision maker cannot improve utility by changing

consumption or market transactions.  This condition is true by assumption and has several

implications as summarized in the following corollaries; proofs for the corollaries are in

the first Appendix.

Corollary 2.1:  The optimality condition implies that period 0 marginal utility

discounted at the risk-free rate between period 0 and period 1 minus the sum of period 1

marginal utilities equals zero.

ψ ∂
∂

∂
∂1

0

0

U

c� �

− ⋅
U
w1

1 = 0
(2.2)

where 
∂
∂

∂
∂

∂
∂

∂
∂

U
w� � �

...
�

1

=
�
! 

"
$#

U

w

U

w

U

wS
1
1

1
2

1

 and ψ 1
0  is the risk-free discount factor between

period 0 and period 1.
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Corollary 2.2:  When markets are incomplete, the change in period 1 wealth due to re-

optimization is constant across all states and equals the opposite of the escalated change in

period 0 consumption .

∆ ∆w c1 0 1
0= − /ψ  . (2.3)

Corollary 2.3:  When markets are complete, there is no change in period 0

consumption (so that �c c0 0= ) or total period 1 wealth with the net payoff (so that

�w w i Si i
1 1 1= ≤ ≤  for ) .

2.4 Buying Price

Assumption 2.3:  The utility function is assumed to be time- and state-separable for the

remainder of this section.

U z u z0 0 0,z u z1 1 1 11 6 1 6 1 6= + ⋅ (2.4)

where u z1 11 6 3 8 3 8 3 8= u z u z u zS S
1
1

1
1

1
2

1
2

1 1... .

This assumption is more general than assuming that the form of the utility function is

expected utility (i.e., u z1 11 6 3 8 3 8 3 8= p u z p u z p u zS S1
1 1

1 2
1 1

2
1 1� ) because it allows the

form of the utility function to be state-dependent.

Theorem 2.2:  For  time- and state-separable utility functions, the period 0 buying price

B0 for period 1 payoffs of x1 is approximately equal to the state-price weighted sum of the

payoffs.  Results are exact when markets are complete or the period 1 utility function is

linear or exponential.

B0 ≅ ⋅ψψ 1 1x  . (2.5)

The state prices equal ψψ 1
1

1 1
=

⋅
∈ ++

ψ 1
0∇

∇
u

u
RS , where ∇u1 = ∇ ∇ ∇u u uS

1
1

1
2

1...  and

∇
=

−
+ −

+ − ≠

= + − =

%
&K

'K

(
)K

*K
u

u w u w

w x B
w x B

u w w x B

i

i i i i

i i
i i

i i i i
1

1 1 1 1

1 1 1
1 1 1

1 1 1 1 1

0

0

�

'

3 8 3 8

3 8
∆

∆

∆

  for

                for

.

Proof:  According to Theorem 2.1 for a time- and state-separable utility function, B1 is

the period 1 buying price for payoffs x1 if u c u c0 0 0 0� �1 6 1 6 1 6 1 6+ ⋅ = + ⋅u w u w1 1 1 11 1.  This can
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be rewritten as u c u c0 0 0 0 0� �1 6 1 6 1 6 1 6− + − ⋅ =u w u w1 1 1 1 1  and then as

∇ + ⋅ + − =u c B0 0 1 0∆ ∇∇ ∆u w x1 1 1 11 6  with ∇u1  defined above and

∇
=

−
≠

= =

%
&K

'K

(
)K

*K
u

u c u c

c
c

u c c
0

0 0 0 0

0
0

0 0 0

0

0

�

'

1 6 1 6

1 6
∆

∆

∆

  for 

               for
.  Dividing by ∇u1 1⋅  (it is strictly positive because

every element of ∇u1  is strictly positive) and adding B1 results in

B
u

c1
0

0=
⋅

�
! 

"
$#

⋅ +
⋅

�
! 

"
$#

⋅ + ∇
⋅

∇
∇

∇
∇

∆
∇

u
u

x
u

u
w

u
1

1
1

1

1
1

11 1 1
∆ .  B1 is discounted to period 0 at the risk-

free rate since it occurs at period 1 with certainty with the result that the period 0 buying

price is

B
u

c0
1
0

1
0

0
0= ⋅ +

⋅
�
! 

"
$#

⋅ + ∇
⋅

ψψ 1 1
1

1
1

11 1
x

u
u

w
u

ψ ψ∇
∇

∆
∇

∆  .
(2.6)

Theorem 2.2 is proven if the second and third terms of (2.6) are approximately equal to

zero; i.e., when 
ψ ψ1

0
1
0

0
0 0

∇
∇

∆
∇

u
u

w
u

1

1
1

11 1⋅
�
! 

"
$#

⋅ + ∇
⋅

≅u
c∆ .  Consider two cases.

Case 1: Complete Markets.  Corollary 2.3 implies that ∆c0 0=  and states that

�w w i Si i
1 1 1= ≤ ≤ for  when markets are complete.  The third term of (2.6) equals 0 because

∆c0 0= .  The second term equals zero because 
ψ ψ1

0
1
0∇

∇ ⋅
�
! 

"
$#

=
⋅

�
!
 

"
$
#u

u

u w

u w
1

1

1 1

1 11 1

'

'

1 6
1 6 , which are the

state prices from a financial economics approach and the state price weighted sum of the

change in period 1 wealth must equal zero to avoid arbitrage opportunities.

Case 2:  Incomplete Markets.  The change in period 1 wealth associated with the re-

optimization is the same across all states when markets are incomplete and, according to

Corollary 2.2, it equals ∆ ∆
w

c
1

0

1
0= −

ψ
.  Substituting this into the second and third terms of

(2.6) results in 
ψ 1

0
0

0

∇ − ⋅
⋅

�
! 

"
$#

u
c

∇
∇

u
u

1

1

1
1

∆ .  This term is approximately equal to zero since the

numerator in the square brackets is approximately equal to the optimality condition from

Corollary 2.1.
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Linear and exponential utility functions represent a special case when markets are

incomplete so that Equation (2.6) is satisfied exactly.  This is because there is no change in

period 0 consumption.

Corollary 2.4:  When markets are incomplete, the change in period 0 consumption

must be zero if and only if the period 1 utility function is linear or exponential (see

Appendix for proof).

The following two examples illustrate how Theorem 2.2 can be applied.

Example 2.2:  Investment Opportunity Using an Exponential Utility Function.  A firm

is deciding whether or not to invest $0.6M in period 0 in a project that is equally likely to

pay off either nothing or $2.0M in period 1.  The risk-free discount rate is 10 percent, the

firm’s utility function is U z u z p e p ez z
0 0 0

1 1 2 11
1

1
2

, / /z11 6 1 6= − −− − , where z is in millions of

dollars, and markets are incomplete.

Consider the cases when there is positive and negative correlation between payoffs and

existing wealth (i.e., x1 = 0 0 2 0. .  and w1 = 10 0 12 0. .  or w1 = 12 0 10 0. . ) as well

as the case when wealth is certain (w1 = 110 110. . ).  State prices are calculated using

Theorem 2.2 with the results that: the buying price when there is positive correlation is

$0. . . $0.0M1 0 86 0 05M $2.0M= ⋅ ; the buying price when wealth is certain is

$0. . . $0.0M5 0 65 0 26M $2.0M= ⋅ ; and the buying price when there is negative

correlation is $1. . . $03 0 26 0 65M .0M $2.0M= ⋅ .5  This suggests that the firm should

only invest when there is negative correlation because the project acts as a hedge against

uncertainty (i.e., this is the only case when the investment price is less than the buying

                                               
5 The definition of state prices in (2.5) for a period 1 exponential utility function results in a state-price
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0 1
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1
1
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1
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−
−

−
−









ψ

x B

x x

x B

x x
, where 

( ) ( )
B

p e p e

p e p e

w x w x

w w1

1 1
1

1
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2 1
2

1
2

1 1
1

2 1
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+
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− + − +

− −
ρ

ρ ρ

ρ ρ
ln

/ /

/ /
.

Notice that the period 1 buying price equals the buying price with the payoffs minus the buying price
without the payoffs.  This leads to the observation that an alternative approach to this problem is to
calculate the buying price for two portfolios (one with and one without the payoffs) and the difference
between the two is the buying price for the payoffs.  For example, take the case when there is negative
correlation.  The buying price for the portfolio of existing wealth is $9.6M and the buying price for the
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price $0. $1.6 3M < M ).  It is important to realize that the large difference in buying prices

is due to the correlation, not to the size of the payoffs; e.g., it can be shown that the

relative difference in the buying prices is still very dramatic when the project is reduced to

a fraction of the size of the original project.

Example 2.3:  Insurance Opportunity Using a Logarithmic Utility Function.  A

decision maker currently has $100,000 and owns a home and wants to find his or her

buying price for the purchase of fire insurance.  The home can be sold for $100,000 in

period 1 but has a 5 percent chance of burning down before period 1 (i.e.,

p = 0 05 0 95. . ).  The decision maker’s utility function is

U z z p z p z0 0
1

1
1 2

1
210 10, ln ln lnz +11 6 1 6 3 8 3 8= + , where z is in thousands of dollars.  The

homeowner can borrow and lend at 10 percent per period and markets are incomplete.

Without insurance, it is optimal for the homeowner to spend $16,538 in period 0 and to

invest the rest so that he or she will have $91,808 in period 1.  Thus, including the value of

the house, w1 = 91808 191808. . .

Rather than performing a full optimization, assume that there is no change in period 0

consumption or period 1 wealth so that the decision maker’s total wealth with the net

payoff equals � . .w1 = − −191808 1918081 1B B .  A fixed-point approach is used to

calculate B1, where ψψ 1 1B B1 1
0

11 6 ⋅ =x ψ .  The state-price vector is ψψ 1 = 0 0631 0 8460. .

and the period 0 buying price is B0 310= $6, ; this result is almost identical to a full

optimization.

                                                                                                                                       

portfolio of existing wealth plus the payoffs is $10.9M.  Thus, the buying price for the payoffs is
$1.3M.
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3. Multi-Period Model

Chapter 2 presented a single valuation approach applicable in complete and incomplete

markets in a discrete time, single-period setting.  This chapter extends the results to a

multi-period setting.  While this section follows the format from Chapter 2, the way in

which uncertainty is revealed over time needs to be determined in a multi-period setting.

There are several ways to make this determination.  One approach is to use a probability

space (Duffie 1992).  When the events of the probability space are all taken together, the

result is a filtration that represents how information is revealed through time.  Another

approach is to partition the state space.  While the filtration approach has its advantages in

continuous time, the partitions approach is taken here because of its intuitive appeal.

This section develops a single valuation approach applicable in complete and

incomplete markets in a discrete time, multi-period setting.  Assumptions and definitions

are presented in Section 3.1, with a particular focus on partitions.  Section 3.2 shows that

the buying price for any investment satisfies the condition that utility with the net payoffs

equals utility without the net payoffs and the condition that utility cannot be improved by

changing consumption or market transactions.  Section 3.3 introduces the assumption of a

time- and state-separable utility function and demonstrates that the decision maker’s

buying price for an investment is approximately equal to the state-price weighted sum of

its payoffs; results are exact when markets are complete or the utility function is additive

exponential.  Section 3.4 iteratively calculates the buying price using a dynamic

programming approach.  Exponential and logarithmic examples are included.

3.1 Setting

Definition 3.1:  S is the set of all possible states that can occur at times t equal to 0, 1,

…, T.6  Uncertainty is resolved as time progresses so that at time t, states that have

occurred prior to time t are known.  This set of states s s st0 1, , ,�  up to time t is denoted

as s; @
t
.  Thus, S s S|; @

t
⊂  is the set of all possible states that can occur over times t+1,

…, T given that the particular states s st0,...,  occurred at times 0, …, t.
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Definition 3.2:  A partition of S s|; @
t
 is a collection of disjoint non-empty subsets of

S s|; @
t
 whose union is S s|; @

t
.  One way to partition S s|; @

t
 is in terms of the current

state and future partitions.  Let st t
| s; @ −1

 refer to state st at time t given that states

s st0 1,..., −  have occurred at times 0, …, t-1; s; @ ; @
t− = ∅

1
 when t equals 0.  A partition at

time t of S s|; @
t
 for 0 ≤ ≤t T  is the set that contains the current state and the set of all

partitions at the next period given that the current state has occurred.  That is, the

partition P s Pt t t t t t
| | , |s s s; @ ; @ ; @= B> C= − +1 1  for 0 1≤ ≤ −t T .  Figure 3-1 illustrates what

partitions look like when the state space is S = 1 1 2 1 1 2 1 1 2 2 20 1 1 2 1 2 1 2 1 2 1, , , | , | , | , |; @ .7  The

period 0 partition is the largest oval, the period 1 partitions are the medium sized ovals,

and the period 2 partitions are the smallest ovals.  The period 0 partition contains all

subsequent partitions and thus the entire state space since there is no uncertainty in period

0.

12|11

Period 0          Period 1             Period 2

22|11

12|21

22|21

11

21

10

Figure 3-1.  Uncertain states (numbers) and partitions (ovals) of S.

                                                                                                                                       
6 As in Section 2, all variables that have more than one element are presented in bold type.
7 State 10 is not explicitly included in periods 1 and 2 for notational simplicity because it is the same in

all states.
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Definition 3.3:  S R0
1∈  is the period 0 price of an investment that has time- and state-

dependent payoffs x
| s | s

t t
P St R; @ ; @∈  in partition Pt t

| s; @ ; i.e., x x x| s | s | s
t t t

P

t

P

T

Pt t t; @ ; @ ; @J L= , ,� .

Definition 3.4:  B R
Pt t

τ
| s; @ ∈  is the decision maker’s period τ buying price for the

investment’s payoffs of x
| s

t
Pt ; @ .  It is the amount that the decision maker is willing to pay

in period τ in the partition Pt t
| s; @  in order to receive the payoff vector x

| s
t

Pt ; @ .  It is

assumed that t T≤ ≤τ .  That is, B
Pt t

τ
| s; @  cannot occur before the partition is defined or

after the end of the analysis.  The definition of B
Pt t

τ
| s; @  is made more precise in Theorem

3.1.  The net payoffs associated with the payoffs x
| s

t
Pt ; @  and the buying price B

Pt t

τ
| s; @  are

x x , , xt
s s s

T
sP P P Pt t t t t t t tB

| | | |; @ ; @ ; @ ; @J L, , 1� �τ τ−  where the 1 vector corresponds to the number of

states at time τ in partition Pt t
| sJ L .

Definition 3.5:  ∆c ∈RS  are the changes in consumption due to re-optimization after

the net payoffs are added.

Example 3.1:  In order to illustrate the definition of net payoffs, consider the state

space from Figure 3-1 with an investment that has period 2 payoffs given that state 2

occurred in period 1.  Since all payoffs occur within the partition P1 12| , the payoffs are

x x2
1 2

2
2 2| |,= B  and the net payoffs can be written as either −B x x1

2
2
1 2

2
2 2, ,| |= B  or

x B x B2
1 2

2
2

2
2 2

2
2| |,− −= B  as illustrated in Figure 3-2; the time subscripts on the states have

been dropped for notational simplicity.
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x2
1|2

-B1
2

Period 0       Period 1       Period 2

A B

x2
2|2

x2
1|2 -B2

2

x2
2|2 -B2

2

Period 0       Period 1       Period 2

Figure 3-2.  Two ways of delineating the net payoffs.

Assumption 3.1:  The decision maker has a strictly increasing utility function that maps

consumption z over all times and states to a real number.  U R R: + →S  where U U= z1 6  and

z S∈ +R .  Utility of consumption in the final period can be viewed as utility of wealth.  A

solution exists to the utility maximization problem, max
z

zU1 6 , where z is budget-feasible.

Assumption 3.2:  c is the solution to the utility maximization problem before the net

payoffs are added and �c  is the solution after the net payoffs are added, where �c  is the

sum of the original optimal consumption (c), the net payoffs

x x , , xt
s s s

T
sP P P Pt t t t t t t tB

| | | |; @ ; @ ; @ ; @J L, , 1� �τ τ− , and the changes in consumption due to re-

optimization (∆c  for 0 ≤ ≤t T  ).  That is, �c c x c= + ++ ∆  except for the case when  t=τ

and the partition is Pt t
| s; @  in which case �

| | | | |
c c x c

s s s s s

ττ ττ ττ ττ
P P P P Pt t t t t t t t t tB

; @ ; @ ; @ ; @ ; @= + − +τ 1 ∆  .

3.2 Necessary Conditions

As in the single-period model from Section 2, two conditions must be satisfied in order

for B
Pt t

τ
| s; @  to be the period τ buying price for the payoffs x

| s
t

Pt ; @ .  First, the decision

maker’s utility with the net payoffs must be the same as the decision maker’s utility

without the net payoffs.  Second, the decision maker cannot improve utility by changing

consumption or market transactions.  The first condition is developed in Theorem 3.1.
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Theorem 3.1:  If B
Pt t

τ
| s; @  is the period τ buying price for the payoffs x

| s
t

Pt ; @  then the

utility of the original consumption plus the net payoffs plus the changes in consumption

due to re-optimization equals the utility of the original consumption.

U U�c c1 6 1 6= (3.1)

where �c  is defined in Assumption 3.2.

Figure 3-3 illustrates the state by state consumption associated with Theorem 3.1

within the context of Example 3.1.  Consumption in the top part of the figure is the

original optimal consumption.  Consumption in the bottom part of the figure is optimal

consumption when the net payoffs are added.  The theorem requires that the utility of

consumption in the top part of the figure equals the utility of consumption in the bottom

part of the figure.

Original
Consumption

c c0 0+ ∆
c c1

1
1
1+ ∆

c c1
2

1
2+ ∆

c c2
11

2
11| |+ ∆

c c2
2 1

2
2 1| |+ ∆

c c x B2
2 2

2
2 2

2
2 2

2
2| | |+ + −∆

c c x B2
1 2

2
1 2

2
1 2

2
2| | |+ + −∆

Period 0 Period 2Period 1

c0

c1
1

c1
2

c2
11|

c2
2 1|

c2
2 2|

c2
1 2|

Original
Consumption

+
Net Lottery

+
Consumption

Changes

Figure 3-3.  Optimal consumption with and without net payoffs.

Optimality Condition :  The second condition that must be satisfied is that the decision

maker cannot improve utility by changing consumption or market transactions.  This

condition is true by assumption and has several implications as summarized in the

following corollaries; proofs for the corollaries are in the appendix.
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Corollary 3.1:  The optimality condition implies that, within any given partition

Pt t
| s; @ , the marginal utility at the beginning of the partition (i.e., at time t) discounted at

the risk-free rate between t and t’  in the partition Pt t
| s; @  (ψ t t, '

0 ) minus the sum of all

marginal utilities at time t’  in the same partition equals zero, where 0 ≤ ≤ ≤t t T' .

ψ ∂
∂

t t

t
t

t

Pt t

U

c
, '

'

|
� �

0 0
s s

U

c
; @ ; @

− ⋅ =∂∂
∂∂

1
(3.2)

Corollary 3.2:  When markets are incomplete, the change in consumption due to re-

optimization at the final time T is the same across all states in partition PT T− −1 1
| s; @  in order

to fully satisfy the budget constraint.  The result is that any particular budget constraint

can be rearranged as follows.

∆ ∆ ∆ ∆ ∆
c

c c c c
T

s T

s

T T

s

T

s

T T

T T

T T
|

|

,

|

, , ,

s
s s

; @
; @ ; @

−

− −

= −
�
��

�
��

− ⋅⋅ ⋅ −
�
��

�
��

−
�
��

�
��

−
�
��

�
��

−

−

1

1 2 2 1 1
1

1
0

2

2
0

1

1
0

0

0ψ ψ ψ ψ
 .

(3.3)

Corollary 3.3:  When markets are complete, there is no change in consumption in any

state so that �c c= .

3.3 Buying Price

Assumption 3.3:  It is assumed for the remainder of this section that the utility function

is time- and state-separable.

U
t

T

z u z1 6 1 6= ⋅
=
∑ t t 1

0

(3.4)

where u zt t1 6  is the vector of utilities over all states at time t.8

                                               
8 Such a utility function can differentiate the way uncertainty is resolved into the analysis when one

models the utility of consumption rather than the utility of income.
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Theorem 3.2:  For time- and state-separable utility functions, the period τ buying price

B
Pt t

τ
| s; @  for payoffs x

| s
t

Pt ; @  in partition Pt t
| s; @  is approximately equal to the state-price

weighted sum of the payoffs.

B
P

i

P

i

P

i t

T
t t t t t t

τ τ
|

,

| |s s s
x; @ ; @ ; @≅ ⋅

=
∑ψψ (3.5)

where the state prices are ψψ τ
τψ

,

s i

s

i

s

u

u
i

P i

P

P
t t

t t

t t

|
|

|

; @
; @

; @
=

⋅
, ∇

∇

0

1
,

∇
=

−
−

− ≠

= − =

%
&K

'K

(
)K

*K
u

u c u c

c c
c c

u c c c
i
j

i
j

i
j

i
j

i
j

i
j

i
j i

j
i
j

i
j

i
j

i
j

i
j

�

�

�

' �

3 8 3 8

3 8

  for

                    for

0

0

, and ψ τ ,i
0  is the risk-free discount factor

between τ and i in partition Pt t
| s; @ .

Proof:  According to Theorem 3.1 for a time- and state-separable utility function,

B
Pt t

τ
| s; @  is the period τ buying price for payoffs x

| s
t

Pt ; @  if u c u ct t t t1 1�1 6 1 6⋅ = ⋅
= =
∑ ∑
t

T

t

T

0 0

.  This

can be rewritten as ∇u c ct t t⋅ − =
=
∑ �1 6
t

T

0

0  with ∇ui
j defined above.  Substituting for �c ct t−

and rearranging the changes in consumption, the payoffs, and the buying price according

to partitions and then dividing by ∇u
s

τ
Pt t

|; @ ⋅1  (because it is strictly positive) and adding

B
Pt t

τ
| s; @  results in

B

u c

u c

u c

u c

P

i i

P

i

P

i t

T

P

s s

s

S

s s

s

S s

T

s

T

s

s

S

t t t t t t

t t

T T T T

T T

T T

τ τ
τ

β|

,

| |

|

| |

|

|

| |

|

|

[

[

[ ]]]

s s s

s

s s

s

s s

s

s

x
u

; @ ; @ ; @

; @

; @ ; @

; @

; @

; @ ; @

; @

; @

= ⋅ +
⋅

�
!
 
 

"
$
#
#

∇

+ ∇

+ ∇
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!
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=

∑

∑

∑

∑ − −
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−

ψ 1

0 0

1 1
1
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1

1

1 1

1

1
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2 1

2 1

1 1

1

1

∇ 1

∆
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∆
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(3.6)
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where β
ψ τ τ

i

P

i

P

t t

t t

= ⋅
⋅

∇
∇
u

u
i

s

s

|

,

|

; @

; @

1

10
.  Theorem 3.2 is proven if β i t i T≅ ≤ ≤1 for  and if the second

term is approximately equal to zero.

Consider first the β terms.  Substituting i for t’  in Corollary 3.1 results in

ψ ∂
∂

t i

t
t

i

Pt t

U

c
, |
� �

0 0
s s

U

c
; @ ; @

− ⋅ =∂∂
∂∂

1 .  Substituting τ for t’  in Corollary 3.1 results in

ψ ∂
∂

τ
τ

t

t
t Pt t

U

c
, |

� �

0 0
s s

U

c
; @ ; @

− ⋅ =∂∂
∂∂

1 .  These two equations can be combined to show that

∂∂
∂∂

∂∂
∂∂

U

c
U

c

s

s

�

�

|

, |

i

Pt t

i Pt t

; @

; @

⋅

⋅
=

1

1ψ τ
τ

0
1.  Thus, the β terms are approximately equal to 1 based on conditions

of optimality.

Next, consider the bracketed term.

Case 1:  Complete Markets.  Corollary 3.3 states that �c c= .  This results in  ∆u ui
j

i
j= '

so that the first order conditions from Corollary 3.1 are satisfied exactly and all of the β’s

equal 1.  In addition, the bracketed term is the normalized state-price weighted sum of the

changes in consumption.  This must equal zero in order to avoid arbitrage opportunities.

Case 2:  Incomplete Markets.  It can be shown by substituting for each ∆cT

sT T
| s; @ −1  using

Corollary 3.2 that the bracketed term in (3.6) reduces to 1
0

0
0 0

∇
∇

u

u
s

T

τ
ψP

T
t t

u c
|

,
; @ ⋅

�

�
�

�

�
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��
�

��
+

�

!
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1 ∆
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u c u cs
P

T

s

s

S

T

s
P

T T
T

s

s

S
T T

T T
T T

T T

T T

1
1
0 1

1
1

1
0 1

1

1

1 1

1

1

1
1 2

1 1
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1 2∇ ∇u uT

s
s T

s
s

s

s|

,

|
|

,

|

|

|; @
; @

; @
; @

; @

; @1 1
ψ ψ

∆ ∆ .  This

term is approximately equal to zero by optimality conditions from Corollary 3.1.

3.4 Buying Price Within a Partition

Determining the period 0 buying price B0 for payoffs x S∈R  based on the results of

Section 3.3 requires that the evaluation be performed over the entire period 0 partition in a

single step.  This presents a potential weakness because it is not clear how well the
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respective sets of ∇u s'  approximate the optimality conditions from Corollary 3.1.  One

way to address this issue is to make the following assumption.

Assumption 3.4:  The buying price for payoffs in prior time periods does not change

with the addition of net payoffs in subsequent time periods.

Example 3.2:  Figure 3-4 illustrates the meaning and implications of Assumption 3.4

using the state space from Figure 3-1.  Panel A illustrates that the decision maker wants to

determine the period 0 buying price B0 for the period 1 payoffs x = ~ ,~x x1
1

1
2= B , where

~
,x x B1

1
1
1

1 2
0

2
1= +ψ  and ~ ,x x B1

2
1
2

1 2
0

2
2= +ψ .  Assumption 3.4 states that B0 is unaffected by the

addition of net payoffs in subsequent time periods.  Panel B indicates that this allows the

decision maker to add the payoffs x x2
11

2
2 1| |,= B  and x x2

1 2
2
2 2| |,= B  and subtract the respective

period 2 buying pricesB2
1 and B2

2  without changing B0.  Panel C shows that the B’s in

periods 1 and 2 cancel with the result that B0 is the buying price for either

x B x B1
1

1 2
0

2
1

1
2

1 2
0

2
2+ +ψ ψ, ,,= B  or x x x x x x1

1
1
2

2
11

2
2 1

2
1 2

2
2 2, , , , ,| | | |= B .

Assumption 3.4 is so useful because it allows one to iteratively calculate the buying

prices of payoff subsets rather than having to calculate the buying price in a single step.

One begins with the final date in which there is any uncertainty, calculates the buying price

of payoff subsets, adds the result to the payoffs in the previous period, and repeats the

process until period 0 is reached.
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x B2
1 2

2
2| −

x2
11|

x2
2 1|

x1
1

x1
2 x2

1 2|

x2
2 2|

x B2
11

2
1| −

x B2
2 1

2
1| −− B0

x B2
2 2

2
2| −

0

0

B

x B1
1

1 2
0

2
1+ψ ,

x B1
2

1 2
0

2
2+ψ ,

Period 0 Period 1 Period 2

− B0A
x B1

1
1 2
0

2
1+ψ ,

x B1
2

1 2
0

2
2+ψ ,

− B0B

Figure 3-4.  Illustration of Assumption 3.4.

More formally, the process is applied as follows.  (1) Calculate the time T buying price

BT

PT T− −1 1
| s; @  for the payoffs x s

T

PT T− −1 1
|; @  in partition PT T− −1 1

| sJ L  at time T using (3.5).  Repeat

this for all PT T− −1 1
| sJ L  partitions.  (2) Discount the results to time T-1 at the risk-free

discount rate for a time T-1 buying price  of ψ T T T

P
B T T

−
− −

1
0 1 1

,

| s; @ .  (3) Add these buying prices

to any payoffs for each partition at time T-1 for a result of

~ | |

,

|
x x BT

P

T

P

T T T

PT T T T T T
− − −

− − − − − −= +1 1 1
01 1 1 1 1 1

s s s; @ ; @ ; @ψ  for each partition.  (4)  Convert the utility function

of consumption over times  T-1 and T to the utility of wealth at time T-1 for each

partition.  (5) Let T equal T-1 and repeat this process for each stage of uncertainty until T

equals 1.  The following two examples illustrate how this process is applied for additive

exponential and additive logarithmic utility functions when there are no pre-existing

uncertain payoffs.9

                                               
9 As discussed in Example 2.2, one approach to resolving situations with pre-existing uncertain payoffs

for which there are no markets is to calculate the buying price for two portfolios (one with only the
pre-existing payoffs and the other with both the pre-existing payoffs as well as the new payoffs).  The
difference between the two is the buying price for the new payoffs.
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Example 3.3:  Additive Exponential Utility Function.  Suppose that the decision

maker’s utility function of consumption is exponential from t equals 0 to T:

U k et

zt t

t

T

z1 6 = − −

=
∑ /ρ

0

.  The budget constraint when there are no other uncertainties prior to

the addition of the net payoffs is ψ t t
t

T

z w0

0
0

=
∑ ≤ .  The decision maker’s problem is to

maximize utility subject to the budget constraint.

A dynamic programming approach can be used to reduce the utility of consumption

over all periods to the utility of consumption through time T-2 plus the utility of wealth at

time T-1 since there is no uncertainty at time T.  Specifically, if UT−2  is the maximum

utility from periods 0 to T-2, the maximized utility equals

U k e k eT
zT zT

T

zT T
T

zT T
−

−
−

− − − −+ − −2
1

1
1 1max

,

/ /ρ ρ
 subject to the budget constraint of

z z wT T T T T− − −+ ≤1 1
0

1ψ ,  where ψ T T−1
0

,  is the risk-free discount factor between times T-1 and

T.  The solution to this problem is U A eT T

wT T
− −

− − −−2 1
1 1/~ρ

 where ~ ,ρ ρ ψ ρT T T T T− − − −= +1 1 1
0

1

and AT−1  is a constant.  This calculation can be repeated iteratively resulting in a utility

function that equals − −−

=

−
−∑k e A et

ct t

t

w/ /~ρ
τ

τ
τ ρτ

0

1

 where ~ ,ρ ψ ρτ τ
τ

=
=
∑ t t
t

T
0  and Aτ  is a constant.

This approach of calculating a new risk tolerance as one moves backward in time is

consistent with results identified by Smith and Nau (1995).

To make the example concrete, assume that there are three periods (0, 1, and 2), that ρt

equals 1 in each period, that the risk-free discount rate is 5 percent per period, that the

payoff is either 1 or 0 in each period with a 50 percent probability, and that wealth is

constant.  The same formula used for calculating state prices in footnote 5 is applicable

here with an adjustment being made to the risk tolerance parameter as the tree is folded

back.  The result is that ψψ ψψ1,2
1

1,2
2= = 0 362 0 591. .  so that

B B1
1

1
2 0 362 0 362 0 591 1 0= = = ⋅. . . .  Adding these buying prices to the period 1

payoffs results in a new set of payoffs of ~ . .x1 = 1362 0 362  and a risk tolerance of 1.95.
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This results in the state-price vector ψ 0,1 = 0 416 0 537. .  for a period 0 buying price of

0 761 0 416 0 537 1362 0 362. . . . .= ⋅ .  This result is identical to a full optimization.

Example 3.4:  Additive Logarithmic Utility Function.  Suppose that the decision

maker’s utility function of consumption is logarithmic in every period.  That is,

U k zt t
t

T

z1 6 1 6=
=
∑ ln

0

.  The budget constraint when there are no other uncertainties prior to

the addition of the net payoffs is ψ t t
t

T

z w0

0
0

=
∑ ≤ .

A dynamic programming approach is used to reduce this to the utility of consumption

through time T-2 plus the utility of wealth at time T-1 since there is no uncertainty at time

T.  Specifically, if UT−2  is the maximum utility from times 0 to T-2, the maximized utility

equals  U k z k zT
zT zT

T T T T−
−

− −+ +2
1

1 1max ln ln
,

1 6 1 6  subject to the budget constraint of

z z wT T T T T− − −+ ≤1 1
0

1ψ , .  The solution to this problem when repeated iteratively is

U k c k w At t
t

t
t

T

z1 6 1 6 1 6= �
! 

"
$#

+ �
��

�
��

�
!
 

"
$
# +

=

−

=
∑ ∑ln ln

0

1τ

τ
τ τ , where Aτ  is a constant.

To make the example concrete, let the discount rate equal 5 percent, initial wealth

equals 2.84, and k k0 1 1
01 1= =, /ψ , and k2 2

01= /ψ .  These assumptions result in an initial

state of consumption of 1 in all periods.

Now consider payoffs where the payoff will be either C or 0 in each period with equal

probability, where C ranges from 0 to 6.  The state prices in a given partition Pt t
| s; @  at

time τ are solved for iteratively using the formula ψψ τ τ
τ τ

τ
τ τ τ τ

-1, 1

P s P s P s
B− − − − − −⋅ =1 1 1 1 1 1| | |; @ ; @ ; @4 9 x

ψ τ τ τ
τ τ

−
− −

1
0 1 1

,

|
B

P s; @
 (as in the single period model, it is assumed that ∆c = 0  since the change

in consumption is the same across all states in a given partition at the final time when

markets are incomplete).  Figure 3-5 presents the period 0 buying price as a percent of

initial wealth for the range of payoffs evaluated.  The figure suggests that, while not exact,

the result is a good approximation of the true buying price obtained by performing a full

optimization.  The approximation is good because the first-order conditions of Corollary
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3.1 are approximately satisfied, not because of a lack of change in consumption when the

net payoffs are added.10
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Figure 3-5.  Estimated and exact buying price for logarithmic utility function.

                                               
10 To illustrate, assume that the payoff is 6 or 0 in every period.  Initial consumption is 1 in every state

and period.  New state by state consumption is { }=2|2
2
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10 c,c,c,c,c,c,c

{ }14.0,14.6,57.2,57.8,27.0,00.4,50.0 .
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4. Application: Investment in Distributed Electricity Resources

Electric utilities have become increasingly reluctant to invest in long lead-time, large-

scale power generation projects for several reasons.  First, facilities have often cost more

and taken longer to construct than initially anticipated.  Second, actual demand has often

not met expectations with the result that the investments were unnecessary.  Third, the

investments have had a greater financial risk than initially anticipated because: a)

regulatory commissions viewed them as imprudent and prevented full cost recovery in

some cases; and b) competition from lower cost suppliers prevented full cost recovery in

other cases.  The result is that generation investments have shifted away from long lead-

time, large-scale generation to short lead-time, modular generation.  Sacramento

Municipal Utility District’s experience with nuclear power represents a good case study of

some of these issues (Smeloff and Asmus 1997).

Integrated utilities are being restructured into unregulated generation companies and

regulated transmission and distribution (T&D) companies.  The regulated T&D companies

will continue to serve the role of power delivery.  Historically, a utility’s revenues have

been based on its assets.  Given that this practice continues, these utilities may be tempted

to expand the T&D system whenever there appears to be a need.

Large T&D investments as typified by new transmission facilities are somewhat

analogous to large generation system investments: they are long lead-time, large-scale

investments.  As a result, T&D companies can learn valuable lessons from the generation

investment experience and avoid some of the potential problems associated with long lead-

time, large-scale investments.  The lessons are as follows.  First, these investments may

cost more and take longer to construct than initially anticipated.  Second, a careful

evaluation of demand uncertainty is essential prior to committing to any long lead-time

investment.  Third, an accurate treatment of the financial risk associated with the

investment is critical, even within a regulatory environment; this is particularly true when

other alternatives represent a competitive threat to the utility.

Distributed resources can enable electric utilities to increase system capacity without

some of the drawbacks associated with large-scale, long lead-time transmission and
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distribution system (T&D) investments.  This chapter evaluates the value of flexibility

associated with distributed resources to satisfy T&D capacity needs.  It calculates

investment cost as a function of investment lead-time.  The chapter begins with a

calculation of the expected cost of distributed resources to illustrate how to perform the

analysis for a risk-neutral decision-maker.  Section 4.2 applies the results from Chapter 3

to account for risk-attitude under three situations: 1) there is only demand uncertainty; 2)

there is demand uncertainty and profit uncertainty, neither of which can be fully hedged by

entering into market transactions; and 3) there is demand uncertainty and profit

uncertainty, where the profit uncertainty can be hedged (see Hoff 1997a for more details

as well as how to incorporate modularity into the analysis.)

4.1 Expected Distributed Generation Cost

Distributed resources typically have shorter construction lead-times than large T&D

investments.  This provides decision-makers with flexibility regarding when to make

investments.  This section illustrates how to characterize the dynamic nature of demand

uncertainty and the important interaction that occurs between demand uncertainty and

investment lead-time.

Utility planners typically incorporate demand uncertainty into an evaluation by

projecting high, average, and low demand growth scenarios.  The weakness of this

approach is that it only gives a static picture of demand uncertainty.  That is, there are

only three possible paths that demand can follow.

A more accurate way to capture the dynamic nature of demand uncertainty is to

recognize that the rate of demand growth can change over time (Hoff and Herig 1997).

Figure 4-1 illustrates this point for a T&D system for a hypothetical utility.  The heavy

solid line in the top part of the figure shows that historical peak demand increased in 1995,

remained constant in 1996, and increased in 1997; the heavy dashed line shows that

system capacity remained constant during this period.  The light lines indicate an

assumption that demand will either increase by 2 MW or remain constant in any given year

(each outcome has equal chances); the light dashed lines indicate that a capacity
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investment is required.  This results in many more than three possible paths that demand

can follow with the number of possible paths increasing over time.

Figure 4-1.  Simple example.

The figure indicates that excess capacity will be eliminated if demand increases by 2

MW.  The utility has decided that it will increase system capacity by either investing in a
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system upgrade or by investing in distributed generation.  The system upgrade costs

$3.000 Million and has a one-year lead-time.  The distributed generation costs $3.500

Million and has no lead-time.  Both investments provide the same amount of capacity and

have infinite lives.  The utility has a 10 percent discount rate.

The expected present value cost of the system upgrade is its investment cost of $3.000

Million.  This is because the upgrade must begin immediately for the utility to be prepared

to satisfy peak demand the first time it occurs.

The expected present value cost of the distributed generation alternative equals the

probability that the investment will be made times the investment cost, discounted to the

current year.  As shown in the figure, the investment could occur in 1998 (point A), 1999

(point B), 2000 (point C), etc.   The expected cost of this is calculated using the

probability tree in the lower right part of the figure.

While it can be shown that the expected cost of the distributed generation alternative

results in a binomial distribution (Hoff 1997b), a simpler solution is to recognize that the

tree has a recursive structure (see the lower left part of Figure 4-1).  In particular, if

demand remains constant in 1998, the probability tree in 1998 is identical to the tree in

1997.  The expected present value cost is the probability of high demand growth times the

distributed generation cost plus the probability of no growth times the expected present

value cost discounted at a rate of 10 percent.

X
X

Expected
Cost

Prob. of
High Growth

Dist. Gen.
Cost

Prob. of
No Growth

Expected
Cost

Discounting

-

-

	
��
= × + ×

+
0 5 5 0 5

1 10%

. $3. .
	 � 	

(4.1)

A state price interpretation of Equation (4.1), since the decision maker is risk-neutral, is

that the state prices are the probabilities discounted at the discount rate.

X X= ⋅ψ 3 500. (4.2)

where ψ = 0 4545 0 4545. . .

The result is that the expected present value cost for the distributed generation

alternative, X, is $2.917 Million, which is less than the $3.000 Million cost of the system
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upgrade alternative.  That is, the distributed generation alternative has a lower expected

present value cost than the upgrade.

4.2 Incorporation of Risk Attitiude

The previous section assumed that the decision-maker is risk-neutral.  This section

incorporates risk attitude into the analysis using the results from Chapter 3.  It analyzes

the cost of an investment that has no lead-time when there is at least one year until the

investment is required.  It performs the analysis from three perspectives: (1) there is only

demand uncertainty; (2) the firm’s value (as represented by its profits) is uncertain in

addition to demand but all markets are incomplete; and (3) both value and demand are

uncertain with markets being complete for the value uncertainty (i.e., the uncertainty

associated with the value of the firm can be hedged by entering into market transactions).

It is assumed that the decision maker has an additive exponential utility function and that

the risk-free discount rate and the risk-aversion coefficient are constant over time.

4.2.1 Demand Uncertainty

First, consider the situation when demand is the only uncertainty.  This results in a

similar scenario as a typical decision analysis approach (Howard 1989) with the difference

being that there are multiple time periods.  It assumes that the firm’s only uncertain cash

flows are the distributed generation costs and can be represented by the bottom of Figure

4-1.  At any particular time, the cost at time τ-1 in state 0 (this is when demand equals 54

MW in Figure 4-1) equals the state price-weighted sum of the costs at time τ in states 0

and 1.

X X Xτ τ τ τ τψ ψ− = +1
0 1 1 0 0 (4.3)

where Xτ
1  is the discounted cost (the negative of the buying price) of all future cash at

time τ in state 1 (demand equals 56 MW) and Xτ
0  is the discounted cost of all future cash

flows at time τ in state 0 (this is when demand equals 54 MW),

Results from Chapter 3 can be used to show that, after substituting for the state prices

when there is an exponential utility function, the equation simplifies as follows.
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where the risk-aversion coefficient for all future wealth is the summation of the risk-

aversion coefficients over the remaining time periods (i.e., ~ρ ρ
τ

τ

=
+=

∑
1 r

t
t

T

1 6
 - see Example

3.3 for a derivation of this result).

The risk-aversion coefficient (~ρτ ) is constant over time since the time frame is infinite

so that ~ρ
ρ

τ =
+1 r

r

1 6
.  The discounted cost of all future cash flows at time τ in state 1 is

$3.5 Million (I = $3.5 Million) because no future investments occur once the investment is

made.  The recursive structure of the tree can be exploited to find the cost at time τ in

state 0.  The discounted cash flows in state 0 are identical for all years.  In addition, the

utility functions are identical up to a scalar multiple.  Thus, the cost in state 0 is the same

for all times so that X Xτ τ
0

1
0= − .  The subscripts and superscripts are dropped and the

appropriate substitutions are made into Equation (4.4).  Notice the similarity between

Equation (4.5) and Equation (4.1).
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A simple optimization program and Equation (4.5) will show that the cost of this

investment ranges between $2.9 Million and $3.2 Million depending upon the risk-

aversion coefficient that is selected when the discount rate is 10 percent.  This is

consistent with intuition because a risk-neutral decision-maker would pay the expected

present value cost of $2.9 Million (the result from Equation (4.1)) while a highly risk-

averse decision-maker would pay $3.2 Million (he or she would plan for the worst

possible scenario even though it only has a 50 percent chance of occurring; the worst case

scenario is that the $3.5 Million cost is incurred for certain in year 1 for a present value

cost of $3.2 Million).
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For purposes of illustration, assume that the decision maker has a risk-aversion

coefficient of $1 Million (so that ~ρ = 11) and that the discount rate is 10 percent.  In this

case, the state prices are ψψ = 0 4605 0 4486. .  and the investment cost is $2.923 Million.

4.2.2 Demand Uncertainty and Firm Value Uncertainty (Incomplete Markets)

Next, consider the situation when both demand and the firm’s total profits are uncertain

and neither uncertainty can be hedged by entering into market transactions.  This is the

case of incomplete markets.  That is, a state-price vector for the firm’s value does not

exist.

Suppose that the firm’s after-tax profits will be high (πH) or low (πL) in any year with a

probability of q and 1-q respectively.  While this model for profits does not allow for large

movements in the value of the firm, it will demonstrate the importance of the correlation

between distributed generation costs and the firm’s profits.

As before, an investment cost of I is incurred when demand increases (probability p)

and no future costs are incurred once the investment is made.  The correlation between

distributed generation costs and firm profits is the same in every year that distributed costs

can occur and it equals corr I ,π1 6 .

Cash flows for the first several years are presented in Figure 4-2.  The probabilities for

each of the branches are the same as those presented in the lower left part of the figure.

The probabilities in the branches are based on the joint probability distribution between p

and q, where A is the adjustment in the probability of high demand growth p given q such

that the expected value and variance conditions on both distributed generation costs and

firm profits are satisfied; A corr I p p q q= − −,π1 6 1 6 1 61 1 .11  V is the buying price of the

firm’s profits without the distributed generation investment and X is the distributed

generation cost.
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Figure 4-2.  Firm’s profits and distributed generation costs.

                                                                                                                                       

11 The limits on the correlation for a given p and q are − ≤ ≤− −min , , min ,B B corr I B BL L U U
1 13 8 1 6 3 8π

where B
pq

p qL =
− −1 11 61 6  and B

p q

p qU =
−

−
1

1

1 6
1 6 .  This ensures that all probabilities are between

0 and 1.  Luenberger (1997, Section 16.4) presents an alternative way to determine the probabilities.
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Once again, the recursive structure of the tree (both in terms of cash flows and the

utility function) can be exploited.  The result is presented in the lower left part of Figure

4-2.  As was the case in Equation (4.5), the recursive structure of the tree results in the

following formula with the difference being that there are four possible states.
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Equation (4.6) is simplified to find the distributed generation investment cost.
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where P corr I p p q q
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The difference between Equation (4.7) and Equation (4.5) is that the actual probability

p is replaced the probability p+P.  This, however, can result in a vastly different solution.

This is because P can be viewed as a mathematical adjustment in the probabilities based on

the correlation between profits and distributed generation costs as well as the decision

maker's risk preferences.

In addition to the assumptions that a distributed generation cost of $3.5 Million is

incurred when demand increases (with probability p=0.5), that the risk-aversion coefficient

in any year is $1 Million (this implies that ~ρ = 11), and the discount rate is 10 percent,

assume that the firm’s profits will be either $25 or $50 Million in any given year (with a

probability q=0.5).  Equation (4.7) results in a cost of $1.754 Million, $2.923 Million, or

$3.153 Million, depending upon whether costs are perfectly correlated, not correlated, or

perfectly negatively correlated with profits.  Costs that are highly correlated with profits

act as a hedge against uncertainty because the costs are incurred only when profits are

high (P = -0.4), costs that are uncorrelated reduce to the situation in Section 4.2.1 (P = 0),
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and costs that are negatively correlated with profits intensify the negative aspects of

uncertainty because costs are incurred only when profits are low (P = 0.4).  The

dependence of the expected present value cost on the correlation with profits becomes

even greater as the decision-maker becomes more risk averse.

The four state prices in any period can be reduced to two state prices since there are

only two states of demand growth (the two states are: high demand growth/high profits

plus high demand growth/low profits; no demand growth/high profits plus no demand

growth/low profits).  The state prices in the perfectly correlated and perfectly negatively

correlated cases are ψ = 0 0913 0 8178. .  and ψ = 0 8260 0 0830. .  respectively.

4.2.3 Demand Uncertainty and Firm Value Uncertainty (Partially Complete

Markets)

Finally, consider the situation when both demand and the firm’s value are uncertain and

the uncertainty associated with the firm’s value can be hedged.  This is the case of partially

complete markets.  Assume that the firm’s value follows geometric Brownian motion.

This assumption implies that the state prices are constant over time.  A diagram of this

situation is similar to the top of Figure 4-2 with the difference being that the profits can

change over time.

The formulation of the problem is similar to the formulation in Equation (4.6).  The

primary difference is that the distributed generation cost in each of the demand states is

determined and then the result is adjusted for uncertainty and discounting using the

appropriate market-based state prices.  The recursive structure of the tree at time 0 is

shown in the lower right part of Figure 4-2.
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Equation (4.8) can be simplified to:
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It is important to note that there is a different lower bound on the cost when markets

are complete for the value of the firm.  While Equation (4.7) can result in a cost that is

very small when distributed generation costs are highly correlated with the firm’s value

and the decision-maker is highly risk averse, the same is not the case here.

To illustrate, assume that the first state price is smaller than the second state price.

Equation (4.9) is minimized when p equals q, the correlation is 1, and ~ρ  is large so that

the decision-maker is almost risk-neutral (this is the opposite of the situation in the

previous section where a small ~ρ  reduces the cost).  Equation (4.9) can be simplified and

then solved for X to result in X I=
−
ψ

ψ

1

21
.  That is, the lower bound on the distributed

generation cost depends on the state prices and thus on the market-traded value of the

firm.  This suggests that the firm has less exposure when it can hedge its profit risks by

entering into market transactions.

4.3 Comparison of Results

Table 1 compares the results from the sections on expected cost, demand uncertainty

only , and demand and profit uncertainty when markets are incomplete (Sections 4.1,

4.2.1, and 4.2.2).  The most surprising result in the table is that, assuming that the

discount rate is the same in all cases, the risk neutral decision maker does not have the

lowest cost.  Rather, the lowest cost occurs for a risk-averse decision maker when there is

a positive correlation between profits and costs.  This is because costs that are highly

correlated with profits act as a hedge against uncertainty because the costs are incurred

only when profits are high.
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Table 1.  Comparison of Results

Investment Cost State Prices
(Millions) $3.5M Cost

Incurred
$3.5M Cost
Not Incurred

Risk Neutral $2.917 0.4545 0.4545
Risk Averse
  Demand Uncertainty Only $2.923 0.4605 0.4486
  Demand and Profit Uncertainty
  (Positively Correlated)

$1.754 0.0913 0.8178

  Demand and Profit Uncertainty
  (Negatively Correlated)

$3.153 0.8260 0.0830
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5. Conclusions and Future Research

This research presented an approach to value investments with uncertain payoffs that is

applicable whether markets are complete or incomplete.  The problem was framed within

the context of a discrete-time, discrete-states setting.  Results suggest that, given a time-

and state-separable utility function, a decision maker’s buying price for an investment is

approximately equal to the state-price weighted sum of its future payoffs; results are exact

when markets are complete or the utility function is exponential.

The approach is appealing from a variety perspectives.  From a finance perspective, it

produces results that are consistent with financial economics when markets are complete

(e.g., Duffie 1992) but it is also applicable when markets are incomplete; state prices in

incomplete markets have a similar definition as state prices in complete markets.  From a

decision analysis perspective, it is complementary with other incomplete market results

(e.g., a  certain equivalent approach by Smith and Nau 1995 and a “Portfolio Decision

Analysis” approach by Borison 1996), it extends to problems when the utility function is

exponential but there are pre-existing uncertain payoffs,12 and it extends to non-

exponential utility functions.13  From a real options perspective, it provides a way to

calculate “risk-neutral” probabilities when markets are incomplete and it highlights the

importance of the interaction between options in a new project with pre-existing options in

the portfolio in addition to interactions of options within the same project (Trigeorgis

1996).  The approach should appeal to economists because it is approximately marginal

utility based pricing.  It should also have intuitive appeal to non-economists because one

adjusts for preferences in the state prices by giving a heavier weight to the less desirable

outcomes.  The approach may have computational advantages because the state prices can

be estimated without solving a full utility maximization problem for each new investment

that is evaluated.

There are several avenues of future research to pursue.  From a theoretical perspective,

results from this work need to be further generalized.  First, the results should be extended

to include cases where markets are incomplete but there are more market-traded securities

                                               
12 See Example 2.2.



49

available than the risk-free asset.  Second, there may be multiple approaches to calculating

state prices when markets are incomplete in the same way that there are multiple

approaches to calculating state prices when markets are complete (i.e., the three

approaches are: absence of arbitrage, general equilibrium, and single agent optimality); in

particular, there may be an approach that does not necessitate the use of a utility function.

Third, the results can be generalized to include utility functions that are not time- and

state-separable.  Fourth, the results can be employed within a game theoretic framework

to make investment decisions when there is both competition and uncertainty.14  Fifth, the

results can be developed in a continuous time setting.15

From an empirical perspective, the usefulness of the results of this research could be

increased.  This will be accomplished in a variety of ways.  First, a set of guidelines should

be developed to bound the level of error associated with non-exponential utility functions

in incomplete markets.  This research suggests that the error is small but it does not

explicitly identify how small.  Second, there may be computational advantages with this

approach because the sate prices are estimated without solving a full utility maximization

problem for each new investment that is evaluated.  These advantages should be verified.

Third, the theory needs to be applied to real problems to demonstrate its applicability; a

promising area is the field of real options.  Problems with the option to wait, to invest

incrementally, to expand or contract operating scale, to abandon investment, to adjust

inputs or outputs, or to have future growth opportunities should be evaluated.  While

these types of problems occur within a wide range of industries, the use of this research in

evaluating future growth options will be of particular interest to groups such as venture

capitalists and R&D departments because they face high uncertainty and have incomplete

markets.  Finally, the results need to be simplified and then communicated in a manner that

facilitates their usefulness to a broad range of decision makers.

                                                                                                                                       
13 See Example 2.3 and Example 3.4.
14 This area of research was indentified by Kevin Zhu.
15 These results are already well established when markets are complete.
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6. Appendix: Proofs

Proof for Corollary 2.1:  The optimality condition, the fact that the utility function is

strictly increasing, and the decision maker’s ability to purchase any size increments of

∆c0,∆w11 6  subject to budget constraints imply that U c� , �0 w11 6  is the solution to the

problem max
,

� , �
∆c Y

U c
0

0∆w
w

1
1∈

1 6  where Y is the budget-feasible set.  Consider two cases.

Case 1:  Incomplete Markets.  There is no opportunity to adjust period 1 consumption

state by state when markets are incomplete and there is only the opportunity for risk-free

borrowing and lending.  Thus, ∆w1 = ∆ ∆ ∆w w w1 1 1...   with ∆w R1
1∈  and the

budget constraint is ∆ ∆c w0 1
0

1 0+ ≤ψ .  The first order condition for optimality results in

∂
∂

λU

c�0
=  and 

∂
∂

ψ λU
w�1

1 =⋅ 1
0 .  These two equations are solved for λ and combined to

result in Corollary 2.1.

Case 2: Complete Markets.  There is the opportunity to adjust period 1 consumption

state by state when markets are complete.  Thus, ∆w1 = ∆ ∆ ∆w w wS
1
1

1
2

1...  and the

budget constraint is ∆c0 0+ ⋅ ≤ψψ 1 1∆w  where the state-price vector is ψψ 1 ∈ ++RS  with

ψψ 1 = ψ ψ ψ1
1

1
2

1... S .  The first order condition for optimality results in 
∂
∂

λU

c�0
=  and

∂
∂

ψ λU

wi
i

�1
1=  for 1≤ ≤i S .  Summing over all i, 

∂
∂

λ ψ λU
w�1

11 = 1 =⋅ ⋅ψψ 1
0  since the price of

receiving one unit of consumption in every state in the future is equal to the price of a

risk-free asset (i.e., ψψ 1 1 =⋅ ψ 1
0 ).  These two equations are solved for λ and combined to

result in Corollary 2.1.

Proof for Corollary 2.2:  The budget constraint when markets are incomplete is that

∆ ∆c w0 1
0

1 0+ ≤ψ .  This budget constraint is satisfied with equality since the utility

function is strictly increasing so that ∆ ∆w c1 0 1
0= − /ψ .

Proof for Corollary 2.3:  When markets are complete, period 1 wealth is changed state

by state by re-optimizing so as to exactly offset the change in wealth due to the net payoff.
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This satisfies Theorem 2.1, since U c U c0 00+ + =, ,w w1 101 6 1 6 , and the optimality

condition, since U c0,w11 6  was maximized prior to the addition of the net payoffs.

Proof for Corollary 2.4:  Assume that ∆c0 0= .  Corollary 2.1 requires that

ψ 1
0

0 0u c' '1 6 1 6= ⋅u w1 1 1  for the initial condition and ψ 1
0

0 0u c' ' �1 6 1 6= ⋅u w1 1 1  with the net

payoffs so that u w u w1 1 1 11 = 1' ' �1 6 1 6⋅ ⋅ .  Theorem 2.1 requires that u w u w1 1 1 11 = 11 6 1 6⋅ ⋅� .

These two equations are satisfied simultaneously only when the utility function is linear or

exponential.  Conversely, assume that U z u z0 0 0,z + u z1 1 1 11 6 1 6 1 6= ⋅ , where u z0 01 6  is

arbitrary and u z1 1 11 6 ⋅ = − −

=
∑α ρi z

i

S

e
i
1

1

/ .  Corollary 2.1 requires that

ψ ρ1
0

0 0 1u c' /1 6 1 6 1 6= − ⋅u w1 1 1  for the initial condition.  Multiplying by -ρ and adding u c0 01 6

results in u c u c U c0 0 1
0

0 0 01 6 1 6 1 6− =ρψ ' ,w1 .  Likewise, u c u c U c0 0 1
0

0 0 0� ' � � , �1 6 1 6 1 6− =ρψ w1  for

the net payoff.  Combining these two equations using Theorem 2.1 results in

u c u c u c u c0 0 1
0

0 0 0 0 1
0

0 01 6 1 6 1 6 1 6− = −ρψ ρψ' � ' � .  c0  must equal �c0  since u z0 01 6  has an arbitrary

form so that ∆c0  equals 0.

Proof for Corollary 3.1:  Two cases need to be considered: incomplete markets and

complete markets.  The objective function in both cases is to maximize utility subject to

budget constraints; i.e., max �
∆c

c
∈Y

U1 6  where Y is the budget-feasible set.  The difference

between the two cases comes in the budget-feasible set Y.  When markets are complete,

there is a state price for every time and state (ψψ ∈ ++RS ) so that the only budget constraint

is ∆c ⋅ ≤ψψ 0 .

In contrast, there are multiple budget constraints when markets are incomplete.  In fact,

there are as many budget constraints as there are possible combinations of ∆c’s.  The

number of possible combinations of ∆c’s equals the number of unique branches at time T.

Each constraint is ∆ 0c| s; @
T

⋅ ≤ψψ 0  where ∆c| s; @
T

TR∈ +1  is the change in consumption

when the path s; @
T

 is taken from period 0 to T  and ψψ 0 ∈ ++
+RT 1  is the vector of risk-free

discount factors for each period.
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Case 1:  Incomplete Markets.  Select a partition at time t of Pt t
| s; @ .  Given that all

constraints are binding (which is true based on Assumption 3.1), the first order condition

for optimality at time t is that the marginal utility of consumption plus the change in wealth

in state s; @
t
 equals the risk-free rate at time t multiplied by the sum of the lagrange

multipliers associated with all constraints in partition Pt t
| s; @ .  That is,

∂
∂

ψ λU

ct
t

t
i

Pt t�
|s s; @ ; @

= ∑0 .  Similarly, at time t t'≥  in partition Pt t
| s; @ , the marginal utility in

state s; @
t '
 given  state s; @

t
 equals the risk-free rate at time t’  multiplied by the sum of the

lagrange multipliers associated with all constraints in the “sub-partition” P Pt t t t' '
| |s s; @ ; @⊂ .

That is, 
∂

∂
ψ λU

ct
t t

t
i

Pt t t
�

' |
'

' | ' ,
s s s s; @ ; @ ; @ ; @

= ∑0 .  Since this is true for all sub-partitions Pt t' '
| s; @ , the

results can be summed so that 
∂∂

∂∂
U

c
s s

� '

| ' |
t

Pt t
t

i

Pt t
; @ ; @

⋅ ∑1 =ψ λ0 .  Combining the first order

conditions from time t and time t’  result in Corollary 3.1.

Case 2: Complete Markets.  There is the opportunity to adjust consumption state by

state when markets are complete.  Select a partition at time t of Pt t
| s; @ .  The first order

condition for optimality at time t is 
∂

∂
ψ λU

ct
t

t
t

�

s

s

; @

; @= .  Likewise, the first order condition for

optimality at time t’  for a particular state in partition Pt t
| s; @  is 

∂
∂

ψ λU

ct
t t

t
t t

� '
' |

'
' |

s s

s s

; @ ; @

; @ ; @= .

The sum over all states at time t’  in partition Pt t
| s; @  is 

∂∂
∂∂

ψψU

c
s

s

� '

| '

|

t

Pt t
t

Pt t
; @

; @⋅ ⋅1 = 1λ .  The right

hand side of the equation equals the risk-free rate between times t and t’  in partition

Pt t
| s; @  multiplied by the state price at time t given s; @t

.  That is, ψψ t

Pt t
t t t

t
'

|

, '

s s; @ ; @⋅1 =ψ ψ0 .

Substituting for this and then combining conditions at time t and t’ results in Corollary 3.1.

Proof for Corollary 3.2:  When markets are incomplete, there is a budget constraint

for each path taken.  The discounted change in consumption for any path s; @T
 that is

taken must equal zero, so that
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∆ ∆ ∆ ∆ ∆c c c c cs s s

T T

s

T T

sT T T T
0 0 1

0
1 0 2

0
2 0 1

0
1 0

01 2 1 1 2 1 0+ + + ⋅⋅⋅ + + =− −
− − −ψ ψ ψ ψ, ,

|

,

|

,

|; @ ; @ ; @s s
 since the decision

maker only has the opportunity to borrow or lend at the risk-free discount rate in

incomplete markets.  This rearranges to

∆ ∆ ∆ ∆ ∆
c

c c c c
T

s T

s

T T

s

T

s

T T

T T

T T
|

|

,

|

, , ,

s
s s

; @
; @ ; @

−

− −

= −
�
��

�
��

− ⋅⋅ ⋅ −
�
��

�
��

−
�
��

�
��

−
�
��

�
��

−

−

1

1 2 2 1 1
1

1
0

2

2
0

1

1
0

0

0ψ ψ ψ ψ
 where ψ i T,

0  is the risk-free

discount rate between periods i and T.  The right hand side is independent of the final state

sT since the change in consumption in the final state must be constant given the previous

state in order to fully satisfy the budget constraint.

Proof for Corollary 3.3:  When markets are complete, period t consumption is

changed state by state so that the changes in consumption due to the net payoffs are

exactly offset.  This satisfies Theorem 3.1, since U Uc c+ =01 6 1 6 , and the optimality

condition since U c1 6  was maximized without the net payoffs.
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7. Appendix: Partitions and Time- and State-Separable Utility

Functions

One issue associated with the results in this research is whether a time- and state-

separable utility function is capable of capturing the information about the resolution of

uncertainty in a multi-period setting.  This appendix demonstrates that it is.  This claim is

substantiated through the use of an example based on an expected utility analysis.

A decision maker is offered a project that has equal chances of paying  $1.0 Million or

$0.3 Million in period 1 and in period 2.  The decision maker has an expected utility

function and has $0 of current wealth.  Figure 7-1 illustrates three ways that the time

resolution of the uncertainty associated with these payoffs can be interpreted: (A)  all

uncertainty is resolved immediately; (B) all uncertainty is resolved in period 1; and (C)  the

uncertainty is resolved sequentially in period 1 and in period 2.  The ovals correspond to

the payoffs and the numbers above the lines correspond to the probability of the payoffs

occurring for these three interpretations.

0

1.00 1.0

0.30 0.3

1/2

1/2

1 1

1 1

1.0 1.0

0.3 0.3

1/2

1/2

1

1

0

1.0

0.3

0.3

1/2

1/2
1.0

0.3

1.01/2

1/2

1/2

1/2

(A)  Immediate Resolution (B)  Period 1 Resolution (C)  Sequential Resolution

Period
0

Period
1

Period
2

Period
0

Period
1

Period
2

Period
0

Period
1

Period
2

Figure 7-1.  Project payoffs and resolution of uncertainty with expected utility.
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The figure makes it apparent that the state spaces differ in each of the three case.  Since

there can be uncertainty in period 0, the dependence of future states on the outcome of

period 0 is made explicit only where necessary (i.e., in case A).  The state spaces are

SA = 1 2 1 1 2 2 1 1 1 2 2 20 0 1 0 1 0 2 0 1 2 0 1, , | , | , | , , | ,; @ , SB = 1 1 2 1 1 2 20 1 1 2 1 2 1, , , | , |; @  and

SA = 1 1 2 1 1 2 1 1 2 2 20 1 1 2 1 2 1 2 1 2 1, , , | , | , | , |; @ .  Now the question is whether or not a time- and

state-separable utility function captures this difference.

If one calculates the utility of the payoffs of these three formulations, then the utility of

A is U u u u u u uA = + + + + +1
2 0 1 2

1
2 0 1 20 10 10 0 0 3 0 31 6 1 6 1 6 1 6 1 6 1 6. . . . , the utility of B is

U u u u u uB = + + + +0
1
2 1 2

1
2 1 20 10 10 0 3 0 31 6 1 6 1 6 1 6 1 6. . . .  and the utility of C is

U u u u u u u uC = + + + + + +0
1
2 1

1
2 2 2

1
2 1

1
2 2 20 10 10 0 3 0 3 10 0 31 6 1 6 1 6 1 6 1 6 1 6 1 6. . . . . . .  This

approach results in identical utilities independent of the form of the utility function (i.e.,

U U UA B C= =  ).

The problem with such an approach, however, is that it evaluates the utility of the

payoffs not the utility of consumption.  Specifically, it fails to recognize a decision maker’s

opportunity to optimize inter-temporal consumption by borrowing and lending.  The

evaluation should be based on consumption as depicted in Figure 7-2, where the c’s in A,

B, and C are not necessarily the same.  Subscripts refer to time and superscripts refer to

states.16

                                               
16 The time subscripts on the state superscripts are omitted for notation simplicity.
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Period
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Figure 7-2.  Consumption and resolution of uncertainty with expected utility.

The utility of these three formulations is determined by maximizing expected utility

subject to the income constraints, as presented in Table 7.1.  It is assumed that the

decision maker can borrow and lend at the risk-free rate, where ψ 1
0  and ψ 2

0  correspond to

the risk-free discount rate factors between period 0 and periods 1 and 2.  Notice that that

there is a change in some of the consumption variables as well as the constraints for the

three formulations.
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Table 7.2.  Utility and constraints on formulations A, B, and C.

Expected Utility Constraints

A

1
2 0 0

1
1 1

1 1
2 2

11 1

1
2 0 0

2
1 1

2 2
2 2

2 2 2

u c u c u c

u c u c u c

3 8 3 8 3 8
3 8 3 8 3 8

+ +

+ + +

| | ,

| | ,

c c c

c c c

0
1

1
0

1
11

2
0

2
11 1

1
0

2
0

0
2

1
0

1
2 2

2
0

2
2 2 2

1
0

2
0

10 10

0 3 0 3

+ + ≤ +

+ + ≤ +

ψ ψ ψ ψ
ψ ψ ψ ψ

| | ,

| | ,

. .

. .

B

u c u c u c

u c u c

0 0
1
2 1 1

1
2 2

11

1
2 1 1

2
2 2

2 2

1 6 3 8 3 8
3 8 3 8

+ +

+ +

|

|

c c c

c c c

0 1
0

1
1

2
0

2
11

1
0

2
0

0 1
0

1
2

2
0

2
2 2

1
0

2
0

10 10

0 3 0 3

+ + ≤ +

+ + ≤ +

ψ ψ ψ ψ
ψ ψ ψ ψ

|

|

. .

. .

C
u c u c u c u c

u c u c u c

0 0
1
2 1 1

1 1
2 2 2

11
2 2

2 1

1
2 1 1

2 1
2 2 2

1 2
2 2

2 2

1 6 3 8 3 8 3 8

3 8 3 8 3 8

+ + + +

+ + + +

| |

| |

c c c

c c c

c c c

c c c

0 1
0

1
1

2
0

2
11

1
0

2
0

0 1
0

1
1

2
0

2
2 1

1
0

2
0

0 1
0

1
2

2
0

2
1 2

1
0

2
0

0 1
0

1
2

2
0

2
2 2

1
0

2
0

10 10

10 0 3

0 3 10

0 3 0 3

+ + ≤ +

+ + ≤ +

+ + ≤ +

+ + ≤ +

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

|

|

|

|

. .

. .

. .

. .

This example is made concrete by assuming that the decision maker’s utility function is

U z z z= + +ln ln ln0 1 21 6 1 6 1 6  and that the risk-free discount rate is 0 percent.  Results from

an optimization show that U U UA C B> > .17  That is, each of the three interpretations of the

way uncertainty is resolved result in different utilities using an expected utility formulation.

This confirms that an expected utility formulation can differentiate the way uncertainty is

resolved into the analysis.

                                               
17 The exact results are that UA = -3.02, UB = -3.26, UC = -3.10.
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