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ABSTRACT

This paper presents a method to calculate the cost of satisfying transmission and

distribution (T&D) system capacity needs as a function of investment modularity and

lead-time.  It accounts for the dynamic nature of demand uncertainty, the decision-

maker’s risk attitude, and the correlation between costs and firm profits.  Results indicate

that the modularity and short lead-times associated with distributed resources can

increase their attractiveness in comparison to long lead-time, large-scale T&D

investments.  Results also suggest that distributed resources can operate as a type of "load

growth insurance" if demand growth is positively correlated with profits (so that costs are

incurred when profits are high) and if the distributed resource costs are part of a larger

portfolio that cannot be diversified.

BACKGROUND

Electric utilities have become increasingly reluctant to invest in long lead-time, large-

scale power generation projects for several reasons.  First, facilities have often cost more

and taken longer to construct than initially anticipated.  Second, actual demand has often
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not met expectations with the result that the investments were unnecessary.  Third, the

investments have had a greater financial risk than initially anticipated because: a)

regulatory commissions viewed them as imprudent and prevented full cost recovery in

some cases; and b) competition from lower cost suppliers prevented full cost recovery in

other cases.  The result is that generation investments have shifted away from long lead-

time, large-scale generation to short lead-time, modular generation.  Sacramento

Municipal Utility District’s experience with nuclear power represents a good case study

of some of these issues (Smeloff and Asmus 1997).

Integrated utilities are being restructured into unregulated generation companies and

regulated transmission and distribution (T&D) companies.  The regulated T&D

companies will continue to serve the role of power delivery.  Historically, a utility’s

revenues have been based on its assets.  Given that this practice continues, these utilities

may be tempted to expand the T&D system whenever there appears to be a need.

Large T&D investments as typified by new transmission facilities are somewhat

analogous to large generation system investments: they are long lead-time, large-scale

investments.  As a result, T&D companies can learn valuable lessons from the generation

investment experience and avoid some of the potential problems associated with long

lead-time, large-scale investments.  The lessons are as follows.  First, these investments

may cost more and take longer to construct than initially anticipated.  Second, a careful

evaluation of demand uncertainty is essential prior to committing to any long lead-time

investment.  Third, an accurate treatment of the financial risk associated with the
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investment is critical, even within a regulatory environment; this is particularly true when

other alternatives represent a competitive threat to the utility.

OBJECTIVE

Distributed resources can enable utilities to increase system capacity without some of

the drawbacks associated with large-scale, long lead-time T&D investments (Hoff,

Wenger, and Farmer 1996).  This paper evaluates the alternative of using distributed

resources to satisfy T&D capacity needs.  It presents a method to calculate the cost of a

T&D capacity investment as a function of investment modularity and lead-time.  The

paper builds upon earlier results (Hoff 1996) by taking into account the dynamic nature

of demand uncertainty, the decision-maker’s risk attitude, and the correlation between

costs and firm profits.

The first section uses a simple example to illustrate the value of investments that have

short lead-times when one considers the dynamic nature of demand uncertainty.  It

compares the expected cost of a T&D investment that has a one-year lead-time with a

distributed resource that has no lead-time.  It then goes on to show how to incorporate a

decision-maker's risk attitude into the analysis.  The second section generalizes the

expected cost results from the first section to account for both the investment's lead-time

and modularity; an example is included of how to apply the results.  Conclusions and

future research needs are included in the third section.  Appendix A summarizes the

nomenclature used throughout the paper.

INVESTMENT LEAD-TIME

Distributed resources typically have shorter construction lead-times than large T&D

investments.  This provides decision-makers with flexibility regarding when to make
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investments.  This section uses a simple example to illustrate the value of investments

that have short lead-times when one considers the dynamic nature of demand uncertainty.

The first subsection presents a model to characterize the dynamic nature of demand

uncertainty and sets up the problem.  The second subsection calculates the expected

distributed generation cost.  The third subsection interjects a note on investment valuation

methods.  The fourth subsection determines the cost when the decision-maker is risk-

averse and there is only demand uncertainty.  The fifth subsection determines the cost

when the decision-maker is risk-averse and there is both demand uncertainty and profit

uncertainty.  Results between the various cases are compared in the sixth subsection.

Dynamic Nature of Demand Uncertainty

Utility planners typically incorporate demand uncertainty into an evaluation by

projecting high, average, and low demand growth scenarios.  The weakness of this

approach is that it only gives a static picture of demand uncertainty.  That is, there are

only three possible paths that demand can follow.

A more accurate way to capture the dynamic nature of demand uncertainty is to

recognize that the rate of demand growth can change over time (Hoff and Herig 1997).

Figure 1 illustrates this point for a T&D system for a hypothetical utility.  The heavy

solid line in the top part of the figure shows that historical peak demand increased in

1995, remained constant in 1996, and increased in 1997; the heavy dashed line shows that

system capacity remained constant during this period.  The light lines indicate an

assumption that demand will either increase by 2 MW or remain constant in any given

year (each outcome has equal chances); the light dashed lines indicate that a capacity
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investment is required.  This results in many more than three possible paths that demand

can follow with the number of possible paths increasing over time.1

                                               

1 While this characterization of demand uncertainty only allows for two different states in any given time
period and yearly time periods are used throughout this paper, there is nothing to prevent one from
using a smaller time period in order to obtain a larger number of states as time progresses.  This is
similar to the concept employed in the binomial approach to option pricing (Cox, Ross, and Rubinstein
1979).
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Figure 1.  Simple Example.

The figure indicates that excess capacity will be eliminated if demand increases by 2

MW.  The utility has decided that it will increase system capacity by either investing in a

system upgrade or by investing in distributed generation.  The system upgrade costs
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$3.000 Million and has a one-year lead-time.  The distributed generation costs $3.500

Million and has no lead-time.  Both investments provide the same amount of capacity and

have infinite lives.  The utility has a 10 percent discount rate.

Expected Distributed Generation Cost

The expected present value cost of the system upgrade is its investment cost of

$3.000 Million.  This is because the upgrade must begin immediately for the utility to be

prepared to satisfy peak demand the first time it occurs.

The expected present value cost of the distributed generation alternative equals the

probability that the investment will be made times the investment cost, discounted to the

current year.  As shown in Figure 1, the investment could occur in 1998 (point A), 1999

(point B), 2000 (point C), etc.   The expected cost of this is calculated using the

probability tree in the lower right part of the figure.

While one can calculate the expected present value cost based on the observation that

the probability distribution of the costs are binomial (Hoff 1997a), a simpler solution is to

recognize that the tree has a recursive structure (see the lower left part of Figure 1; X is

the expected present value cost).  In particular, if demand remains constant in 1998, the

probability tree in 1998 is identical to the tree in 1997.  The expected present value cost is

the probability of high demand growth times the distributed generation cost plus the

probability of no growth times the expected present value cost discounted at a rate of 10

percent.

X
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The result is that the expected present value cost for the distributed generation

alternative, X, is $2.917 Million, which is less than the $3.000 Million cost of the system

upgrade alternative.  That is, the distributed generation alternative has a lower expected

present value cost than the upgrade.

A Note on State Prices

Before proceeding to the cases where the decision-maker is risk-averse, it is helpful to

interject a note on investment valuation methods and how these methods can be

interpreted in the risk-neutral case.  The field of financial economics has shown that a

market-based valuation of an investment can be performed using state prices when

markets are complete (i.e., when all risks can be fully hedged by entering into market

transactions).  State prices take into account uncertainty and discounting over time.  If

they exist, there is one price for each state of the world at each date.  The price of an

investment is the state-price weighted sum of its future payoffs (Duffie 1992).

Unfortunately, this approach does not apply to this problem if one cannot purchase

financial instruments to hedge risks associated with the demand uncertainty.

While this problem might appear to lend itself to a real options approach, the real

options approach has some inherent limitations.  In particular, Dixit and Pindyck point

out in their book on real options that "there is no theory for determining the correct

discount rate [to use in the dynamic programming approach that the real option approach

employs when markets are incomplete]…The CAPM, for example, would not hold, and

so it could not be used to calculate a risk-adjusted discount rate in the usual way (Dixit

and Pindyck 1994, p. 152)."  Smith and Nau (1995) similarly point out that one cannot

find the correct discount rate when markets are incomplete.
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In response to this limitation of the real options approach when markets are

incomplete, Hoff (1997b) has shown how to extend the state price approach from

financial economics to the case of incomplete markets.2  The difference is that when

markets are incomplete, the decision-maker evaluates the investment within the context

of his or her own portfolio rather than the market; in a sense, the decision-maker acts like

a market to find the state prices.

How does the state-price approach when markets are incomplete apply in the risk-

neutral case?  A state price interpretation of Equation (1) is that the state prices are the

probabilities discounted at the discount rate.  That is, the state-price vector is

ψ = 0 4545 0 4545. .  and the state price weighted sum of the project costs equals:

X X= +0 4545 3500 0 4545. . .1 61 6 1 6 (2)

As before, the solution to this problem is that the expected present value cost of the

distributed generation investment is $2.917 Million.

Risk-Averse Decision-Maker and Demand Uncertainty

The previous subsection assumed that the decision-maker was risk-neutral.  This

subsection assumes that the decision-maker is risk-averse.  While one could take a typical

decision analysis approach (e.g., Howard 1989) to this problem when there is only

demand uncertainty, the state-price approach is employed because it will become useful

in the next subsection.

                                               

2 Specifically, Hoff (1997b) proves that, given a time- and state-separable utility function, a decision-
maker's buying price for an investment is approximately equal to the state-price weighted sum of its
future payoffs; results are exact when the utility function is exponential.  It is assumed throughout this
paper that the decision-maker has an additive exponential utility function and that the risk-free discount
rate and the risk-aversion coefficient are constant over time.
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Using the same data as was presented in Figure 1, the present value cost at a given

time τ-1 in state 0 (this is when demand equals 54 MW in Figure 1) equals the state price-

weighted sum of the costs at time τ in states 0 and 1.

X X Xτ τ τ τ τψ ψ− = +1
0 1 1 0 0 (3)

where Xτ
1  is the discounted cost of all future cash flows at time τ in state 1 (demand

equals 56 MW) and Xτ
0  is the discounted cost of all future cash flows at time τ in state 0

(demand equals 54 MW),

Results from Hoff (1997b) can be used to show that, after substituting for the state

prices when there is an exponential utility function, the equation simplifies as follows.
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.  The discounted cost of all future cash flows at time τ in

state 1 is $3.500 Million because no future investments occur once the distributed

generation cost is incurred.  The recursive structure of the tree can be exploited to find

the cost at time τ in state 0.  The discounted cash flows in state 0 are identical for all

years.  In addition, the utility functions are identical up to a scalar multiple.  Thus, the

cost in state 0 is the same for all times so that X Xτ τ
0

1
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A simple optimization program and Equation (5) will show that the cost of this

investment ranges between $2.923 Million and $3.182 Million depending upon which

risk-aversion coefficient is selected.  This is consistent with intuition because a risk-

neutral decision-maker would pay the expected present value cost of $2.923 Million (the

result from Equation (1)) while a highly risk-averse decision-maker would pay $3.182

Million (he or she would plan for the worst possible scenario even though it only has a 50

percent chance of occurring; the worst case scenario is that the $3.500 Million cost is

incurred for certain in year 1 for a present value cost of $3.182 Million).

For purposes of illustration, assume that the decision-maker has an annual risk-

aversion coefficient of $1 Million (so that ~ρ = 11).  In this case, the state prices are

ψ = 0 4605 0 4486. .  and the investment cost is $2.923 Million.

Risk-Averse Decision-Maker and Demand Uncertainty and Profit Uncertainty

Next, assume that, in addition to having a risk-averse decision-maker, both demand

and the firm’s profits are uncertain and neither uncertainty can be hedged by entering into

market transactions.  This is the case of incomplete markets.  The firm's total cash flows

are presented in Figure 2.

While there were only two possible states after one year in the previous cases, this

case has more possible states because both demand and profits are uncertain.  If it is

assumed that there are two possible states of uncertainty for profits in any year (profits

can be high, πH, or low, πL, in any year with a probability of q and 1-q respectively3),

then there are a total of four possible states.  The four states (and the associated cash
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flows) are: (1) high profits, high demand growth (πH - 3.5); (2) high profits, no demand

growth (πH); (3) low profits, high demand growth (πL - 3.5); and (4) low profits, no

demand growth (πL).

The probabilities for each of the branches are the same as those presented in the lower

part of Figure 2.  The probabilities in the branches are based on the joint probability

distribution between p and q, where A is the adjustment in the probability of high demand

growth p given the probability of high profits q such that the expected value and variance

conditions on both distributed generation costs and firm profits are satisfied;

A corr I p p q q= − −,π1 6 1 6 1 61 1 .4   The correlation between distributed generation costs

and firm profits is the same in every year that distributed costs can occur and it equals

corr I ,π1 6 .  V is the value of the firm without the distributed generation investment.

                                                                                                                                           

3 While this model for profits does not allow for large movements in the value of the firm, it will
demonstrate the importance of the correlation between distributed generation costs and the firm’s
profits.

4 The limits on the correlation for a given p and q are − ≤ ≤− −min , , min ,B B corr I B BL L U U
1 13 8 1 6 3 8π

where B
pq

p qL =
− −1 11 61 6

 and B
p q

p qU =
−

−
1

1

1 6
1 6

.  This ensures that all probabilities are between

0 and 1.  Luenberger (1997, Section 16.4) presents an alternative way to determine the probabilities.
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Figure 2.  Firm’s profits and distributed generation costs.

As before, the investment cost is the state-price weighted sum of the investment

payoffs.  In this case, however, there are four possible states that can occur at any given

time.  Thus, at any given time τ-1, the discounted cost in state 0 equals

X X X X Xτ τ τ τ τ τ τ τ τψ ψ ψ ψ− = + + +1
0 3 3 2 2 1 1 0 0 (6)
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where Xi
τ  is the discounted cost of all future distributed generation cash flows at time τ

in state i.

As was done in the previous subsection, the recursive structure of the tree both in

terms of cash flows and the utility function is once again exploited.  The result is

presented in the lower part of Figure 2.  After substituting for the state prices and

simplifying (see Hoff 1997b for details), the result is that
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The difference between Equation (7) and Equation (5) is that the actual probability p

is replaced the probability p+P.  This, however, can result in a vastly different solution.

This is because P can be viewed as a mathematical adjustment in the probabilities based

on the correlation between profits and distributed generation costs as well as the decision-

maker's risk preferences.

In addition to the assumptions that a distributed generation cost of $3.500 Million is

incurred when demand increases (with probability p=0.5), that the risk-aversion

coefficient in any year is $1 Million (this implies that ~ρ = 11), and the discount rate is 10

percent, assume that the firm’s profits will be either $25 or $50 Million in any given year

(with a probability q=0.5).  Equation (7) results in a cost of $1.754 Million, $2.923

Million, or $3.153 Million, depending upon whether costs are perfectly correlated, not

correlated, or perfectly negatively correlated with profits.  Costs that are highly correlated
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with profits act as a hedge against demand uncertainty because the costs are incurred only

when profits are high (P = -0.4), costs that are uncorrelated reduce to the result from the

previous subsection (P = 0), and costs that are negatively correlated with profits intensify

the negative aspects of demand uncertainty because costs are incurred only when profits

are low (P = 0.4).  The dependence of the present value cost on the correlation with

profits is intensified as the decision-maker becomes more risk-averse.

The four state prices in any period can be reduced to two state prices since there are

only two states of demand growth (the two states are: high demand growth/high profits

plus high demand growth/low profits; and no demand growth/high profits plus no

demand growth/low profits).  The state prices in the perfectly correlated and perfectly

negatively correlated cases are ψ = 0 0913 0 8178. .  and ψ = 0 8260 0 0830. .

respectively.

Comparison of Results

Table 1 compares the results from the three cases considered above.  The most

surprising result is that, assuming that the discount rate is the same in all cases, the risk-

neutral decision-maker does not have the lowest cost.  Rather, the lowest cost occurs for a

risk-averse decision-maker when there is a positive correlation between profits and costs.

This is because costs that are highly correlated with profits act as a hedge against

uncertainty because the costs are incurred only when profits are high.  Lovins and

Lehmann (1997) have appropriately termed this effect as "load growth insurance."
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Table 1.  Comparison of Results

Investment Cost State Prices
(Millions) $3.5M Cost

Incurred
$3.5M Cost
Not Incurred

Risk-neutral $2.917 0.4545 0.4545
Risk-averse
  Demand Uncertainty Only $2.923 0.4605 0.4486
  Demand and Profit Uncertainty
  (Positively Correlated)

$1.754 0.0913 0.8178

  Demand and Profit Uncertainty
  (Negatively Correlated)

$3.153 0.8260 0.0830

INVESTMENT LEAD-TIME AND MODULARITY

Expected Distributed Generation Cost

Distributed resources are modular in addition to having short construction lead-times.

This section generalizes the lead-time result from the previous section for the risk-neutral

case and incorporates modularity into the analysis.

Figure 3 presents the general problem formulation.  The top part of the figure presents

the possible paths that future demand can follow.  The notation in the figure is as follows:

I is the investment cost ($ per increment of investment); L is the investment lead-time

(years); N is the number of increments of distributed generation investments that need to

be made to provide the same amount of capacity as the system upgrade; T is the number

of years in which excess system capacity will vanish if demand grows at the high rate for

each of those years; and X i is the expected present value distributed generation cost in

state i.  The utility will increase system capacity by either upgrading the T&D system

with a single investment or by installing distributed generation in increments large

enough to satisfy one year’s worth of demand growth at the high rate.
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  There are three key regions of interest in the figure: 1) excess capacity exists but no

investment is required (below state T-L); 2) excess capacity exists and investment is

required (states T-L through T-L+N-1); and 3) all investments have been made (above

state T-L+N-1).  The x-axis corresponds to the year and the y-axis corresponds to the

possible demand states in any given year.
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Figure 3.  General Formulation

The expected cost can be calculated by drawing out the full probability tree.  This is

the approach taken in Hoff (1997a).  A simpler approach, however, is to recognize that
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the probability tree has a recursive structure as shown in the bottom part of Figure 3.  The

expected present value cost of all future expenditures at any state t is as follows.
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Equation (8) can be simplified to
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and then solved iteratively by beginning at t equal to T-L+N and repeating until t equals 0

to determine the expected present value cost (the following equations assume that the

discount rate is positive).

X I R R RN T L0 1 1= − − × −3 8 1 6 1 6/

 Benefit of
Modularity

Benefit of Short
    Lead-Time 

 ���� ���� �� �� (10)

where I is the cost of an increment that will satisfy one year’s worth of demand growth at

the high rate, N is the number of increments, T is the number of years remaining until

excess system capacity is eliminated if demand grows at the high rate, L is the lead-time

for any increment, R is the “discount factor” and R
p

p r
=

+
, p is the probability that

demand will grow at the high rate, and r is the real discount rate.  It can be shown using

an analysis similar to the one above that the real discount rate is replaced with r
r

'= −
+

α
α1
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when the investment cost is changing at the rate of α per year (i.e., the time t cost is

I
t

1+ α1 6 ).

Equation (10) can be further generalized by performing an analysis similar to the one

above where the size of each increment of investment provides more than one year’s

worth of demand growth but still is modular.  The results are similar to those above with

the difference being the addition of a term that accounts for the degree of modularity.

X I R R RM N M T L0 1 1= − − ×× −3 8 3 8 1 6/

 Benefit of
Modularity

Benefit of Short
    Lead-Time 

 ���� ���� �� �� (11)

where I is the cost of an increment that will satisfy M years worth of demand growth at

the high rate and all other variables are the same as before.

Several comments are in order about Equation (11).  First, the benefits associated

with modularity and short lead-time can be explicitly identified.  The modularity benefits

are analogous to earlier results developed by Hoff, Wenger, and Farmer (1996) and Hoff

(1996).5  Second, there is an added benefit associated with short lead-times.  Third, the

expected present value cost is driven by distributed generation price and demand growth

(together, these affect the cost per increment of investment), demand growth uncertainty,

discount rate, distributed generation price escalation (or reduction), the degree of

modularity, and lead-time.  Fourth, lowering the expected rate of demand growth (by

changing the probability of high demand growth by multiplying p by Y, where Y is a

number between 0 and 1) has the same effect as increasing the discount rate to r/Y (i.e.,

                                               

5 Equation (11) in this paper results in Equation (9) in Hoff (1996) when N is very large, M equals 1, p
equals 1, there is no escalation in the existing capacity expansion plan cost, T equals 0, and L equals 0.
Equation (11) in this paper results in Equation (2) in Hoff, Wenger, and Farmer (1996) when M goes to
0.
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R
pY

pY r

p

p r Y
=

+
=

+ /
).  Fifth, distributed generation cost decreases have a slightly

greater effect on reducing the expected cost than increasing the real discount rate.

Example

To illustrate the use of Equation (11), suppose that a portion of a utility’s T&D

system is capacity constrained in a planning area that has stringent emissions restrictions.

The utility has decided to either upgrade the transmission system or to install distributed

photovoltaic (PV) systems.  Historical data suggest that there are equal chances (p equals

0.5) of demand growth being 5 MW or nothing in any given year.  Excess system

capacity will be exhausted in 5 years (T equals 5) if demand grows at the high rate each

year.  The discount rate is 10 percent (r equals 10 percent).

The T&D upgrade will cost $25 Million, will increase capacity by 50 MW (so its per

unit cost is $500/kW), and has a 5-year lead-time.  Distributed PV plants will be installed

in 5 MW increments, will cost $15 Million per increment and have $5 Million in system

benefits per increment (thus, while the price of PV is $3,000/kW, the investment cost

from the T&D system perspective, I, is $10 Million and the per unit cost is $2,000/kW),

will have a 1-year lead-time, and there will be 10 increments to provide the same capacity

of the T&D upgrade.  These data are summarized in Table 1.
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Table 1.  Data for Example.

T&D Upgrade PV Generation
Per Unit Cost $500/kW $2,000/kW6

Increment Size 50 MW 5 MW
Years of Demand Growth (M) 10 years 1 year
T&D Increment Cost (I) $25 Million $10 Million
Number of Increments (N) 1 10
Lead-Time (L) 5 1

Present Value Cost $25 Million $24 Million

According to Equation (11), the expected present value cost of the T&D upgrade is

$25 Million and the expected present value cost of the distributed PV generation

alternative is $24 Million.  Thus, the distributed PV generation cost is lower than the

T&D upgrade cost even though the per unit cost of PV generation is four times the cost

of the upgrade.  Figure 4 presents the break-even cost for a range of investments as a

function of their modularity and lead-time as compared to the T&D upgrade cost.  The

figure shows that highly modular, short lead-time investments can have a much higher

per unit cost than the non-modular, long lead-time T&D upgrade and still be cost-

effective.

                                               

6 This is the total cost of the PV system minus the other benefits the PV provides to the utility.  Thus, it
represents the effective cost of the PV system from the T&D perspective.  It is assumed that every kW
of PV provides a kW of capacity to the T&D system.  This cost would need to be  modified as discussed
in Hoff (1996) to account for a less-than-perfect match between the PV plant output and peak demand.
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Figure 4.  Break-even Cost as a Function of Modularity and Lead-Time.
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This example assumed that the cost of PV was constant over time.  In fact, PV prices

have been declining at a real rate of about 9 percent per year (see Wenger, Hoff, and

Pepper 1996, p. 5-2 for a plot of historical price reductions).  If these price decreases

continue, PV could have a current price of more than $6,000/kW7 and still be a lower cost

alternative than the T&D upgrade.  This is because there will be no investment in PV for

at least four years (when its cost will be reduced to about $4,000/kW).

CONCLUSIONS

This research presented a method to help utility planners and regulators to manage the

risks caused by demand uncertainty in the T&D system using distributed resources.  The

method accounted for the dynamic nature of demand uncertainty and evaluated the

relationship between demand uncertainty and investment lead-time and modularity.  It

                                               

7 As before, this is only the amount that is allocated to the T&D system; it does not include the other
benefits associated with the PV system (i.e., energy value, generation system capacity value, energy loss
savings, environmental benefits, etc.).
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demonstrated how to incorporate a decision-maker’s risk attitude into the analysis when

there is both demand uncertainty and firm profit uncertainty.

Results indicate that the modularity and short lead-times associated with distributed

resources can increase their attractiveness in comparison to large-scale, long lead-time

T&D investments.  Results also suggest the distributed resources can operate as a type of

"load growth insurance (Lovins and Lehmann 1997)" if demand growth is positively

correlated with profits (so that distributed generation costs are incurred when profits are

high) and the distributed resource costs represent a part of a larger portfolio that cannot

be diversified.

This work has only begun to address a number of the issues associated with

distributed resources and uncertainty.  There are several areas of future work.  From a

methodological perspective, there is a need to: (1) assess the empirical accuracy of the

demand uncertainty model employed in this paper; (2) evaluate distributed resources that

have shorter lives (e.g., some demand-side management programs); (3) examine

strategies that combine distributed generation and traditional T&D investments;8  (4)

extend the analysis to non-exponential utility functions and other models of firm profits;

(5) incorporate distributed resource cost uncertainty into the analysis; (6) incorporate the

technical effectiveness of distributed resources at satisfying peak demand as a planning

area becomes saturated and the shape of the load curve shifts; (7) evaluate the impact of

eliminating the utility’s obligation to have sufficient T&D capacity;  (8) extend this work

to an international setting; and (9) apply this work from a customer perspective.  From a

                                               

8 Hoff (1997a) has some preliminary results using an expected cost framework.  He shows that, even in
cases when the distributed generation alternative cost exceeds the T&D upgrade cost, it can effectively
be used to delay the upgrade until the load grows with the possibility of some cost being incurred before
the upgrade is completed.
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practical perspective, there is a need to: (1) design policies that give T&D utilities the

option and incentive to either own distributed generation investments or to set the

appropriate price signals to stimulate investment in distributed generation; (2) evaluate

T&D investment decisions in the context of a competitive environment by comparing a

customer’s option to purchase power from either competitive generation wheeled across

the utility’s T&D system or directly from a distributed generator; and (3) apply the results

to actual case studies.
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APPENDIX A:  NOMENCLATURE AND DEFINITIONS

A = adjustment in the probability of high demand growth p given the
probability of high profits q such that the expected value and variance
conditions on both demand growth and firm profits are satisfied, where A

= corr I p p q q,π1 6 1 6 1 61 1− −
B = bounds on corr(I,π)
corr(I,π) = correlation between distributed generation costs and firm profits
I = cost in $ per increment of investment
L = lead-time for investment in years
M = number of years of capacity that an increment of distributed generation

will provide if demand grows at the high rate
N = number of increments of distributed generation needed to provide the

same amount of capacity as the system upgrade
P = adjustment in the probabilities based on the correlation between profits

and distributed generation costs in incomplete markets
p = probability that demand will grow at the high demand growth rate
q = probability that firm profits will be high
r = real discount rate
R = discount factor used in the expected cost calculation, where R = p/(p+r)
T = number of years until excess system capacity vanishes if demand grows at

the high rate every year
V = firm value without distributed genereation costs
X = present value investment cost
α = annual rate of investment escalation
π = firm’s annual after-tax profits
ρ = risk-aversion coefficient in exponential utility function (single period)
~ρ = risk-aversion coefficient in exponential utility function (multiple periods)

ψ = state price
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Complete Markets: Markets are complete if the span of the set of possible portfolio
payoffs equals the number of states of uncertainty (Duffie 1992).
Another way to say this is that an investor can purchase a
portfolio of investments that has exactly the payoffs desired in
every given state.  In essence, this means that the investor can
hedge any uncertain payoffs.

Incomplete Markets: It is assumed that incomplete markets means that the decision-
maker can only borrow and lend at the risk-free rate and all other
uncertain payoffs cannot be fully hedged.


