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ABSTRACT

This article evaluates the ability of three operational satellite
models (SolarAnywhere® Standard, Enhanced, and High
Resolution) to predict ground-based measured irradiance
conditions. Results suggest that the performance of the
satellite-based monitoring approaches that of well-
maintained redundant sensors at a fraction of the operational
cost.

SolarAnywhere Enhanced and High Resolution have an
annual error that is slightly higher than co-located ground
sensors when the invalid ground-based measured data are
excluded from the analysis. SolarAnywhere High
Resolution has 1/3 less error at an hourly time interval
compared to SolarAnywhere Standard Resolution. Results
also show that SolarAnywhere High Resolution has 10
percent Mean Absolute Error on a one-minute time interval,
making it well suited to provide the basis for data required
to perform high-penetration PV studies.

The paper also demonstrates that geographically dispersing
PV systems results in both lower variability and less
prediction error; this is consistent with recent observations
that regional solar resource predictions are considerably
more accurate than single site predictions [1].

1. INTRODUCTION

Solar photovoltaic (PV) plant power production variability
is one of the critical challenges to greater penetration of PV
into the state's electricity system. As illustrated by the list of
References, a number of studies have examined the issue of
PV output variability [2-12]. A consistent finding of these
studies is that variability is reduced when PV systems are
geographically dispersed. That is, variability reduces as the
number of systems increases across a sufficiently large
geographic region.
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A second critical challenge to greater penetration of PV is
the ability to accurately forecast PV power production
variability when it occurs. The California Energy
Commission’s (CEC) Public Interest Energy Research
(PIER) program has embarked on a data validation effort
titled, “Demonstration and Validation of PV Output
Modeling Approach.” A methodology has been developed
that uses satellite-derived solar data to forecast PV fleet
output and quantify variability given the design attributes
and locations of PV systems [13]. The methodology uses
advanced algorithms to track cloud patterns and calculate
plant correlation coefficients.

The California Independent System Operator (California
ISO) sees the potential of using this methodology to
calibrate its studies of system operations under alternative
renewable energy scenarios, as well as the potential for
forecasting PV output. However, before the methodology
will be practical and usable in studies and forecasting by the
California ISO and others, additional work is needed in data
analysis, validation, and system integration.

The California Solar Initiative (CSI) funded the
development of an enhanced resolution satellite-based solar
resource database for the state of California. It is referred to
as SolarAnywhere Enhanced Resolution [14]. The database
has a 1 km spatial resolution and ¥z hour temporal
resolution, using the native spatial and temporal resolution
of the US geostationary satellites. This data set has been
further expanded to have a 1 km spatial, 1 minute temporal
resolution by applying intra-interval short-term forecasting
[15]. It is referred to as SolarAnywhere High Resolution
[14]. These data sets have the potential to provide the solar
resource data required by the methodology described above.

The first step, however, is to quantify the accuracy. This
first step constitutes the main objective of this paper.

There have been some initial efforts at data validation of
SolarAnywhere Enhanced Resolution. For example, Jamaly,
Bosch, and Kleissl [16] compared measured output for a
fleet of 86 PV systems in San Diego County to simulated



PV fleet output using SolarAnywhere Enhanced Resolution
data during high ramping conditions. The authors concluded
that “the satellite data were able to closely follow the
aggregate power output and detect the timing of the ramps,
while 5 irradiance measurement stations [dispersed within
the region occupied by the PV systems] stations were not as
accurate due to smaller number and non-representative
geographical distribution with respect to the PV sites.” This
useful observation calls for a systematic and quantitative
evaluation of prediction accuracy as presented in this paper.

2. METHODS
2.1 Definitions

Accuracy validation often means different things to different
people. As such, it is useful to begin with a definition of
how accuracy quantification can be performed.

There are three fundamental questions that need to be
answered in order to provide a clear definition of how
accuracy validation is performed.

1. What is the data source?
2. What are the time attributes?
3.  What is the evaluation metric?

2.1.1 Data Source

The first step is to identify the data that is being evaluated.
Options include irradiance data or PV power production
simulated using irradiance data and other parameters. In
addition, the analysis can be performed for individual
locations or fleets (i.e., multiple locations). This paper
focuses on irradiance data. The analysis is performed for
both individual locations and fleets.

2.1.2 Time Attributes

The second step is to specify the required time attributes.
These include:

e Time period: total amount of data included in the
analysis. This can range from a few minutes to
many years. This paper focuses on one year of
data.

e Time interval: how the data in the time period is
binned. This can range from a few seconds to
annually. For example, if the time period is one
year and the time interval is one hour, the time
period would be binned into 8,760 increments. This
paper examines one-minute to one-year time
intervals.

e Time perspective: when the predicted observation
is reported. This can range from historical,
(backward looking) to forecasted a few hours
ahead, to forecasted multiple days ahead (forward
looking). This paper focuses on historical data.

2.1.3 Evaluation Metric

The third step is to select the evaluation metric. Error
quantification metrics used in assessing absolute irradiance
model accuracy such as Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) have been precisely
defined [17, 18]. Their relative counterpart (results
expressed in percent), however, can be subject to
interpretation and may cover a wide range of values for a
given set of data depending on reporting practice.

Hoff et al. [19] suggest that the MAE relative to available
energy is a good method to measure relative dispersion
error. This is the method used in the present analysis. The
MAE relative to the average energy available is calculated
by summing the absolute error for each time interval over
the time period, and then dividing by the total available
energy.
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where 17t is the test irradiance at time t, 7% is the

reference irradiance at time t, and N is the number of time
intervals.

It is useful to provide a hypothetical example of how to
calculate the MAE relative to available energy. A short time
period (one day) is selected in order to graphically illustrate
the calculations; the actual calculations in this paper use a
one-year time period.

As presented in Fig. 1, the process is follows:

e  Select time period: 1 day.

e Select time interval: 1 hour.

e Calculate absolute error for each hour and sum the
result as described in the top part of Equation (1):
1.6 kWh/m?/day.

e Calculate available energy for each hour from
reference data and sum the result as described in
the bottom part of Equation ( 1): 4.5 kWh/m?/day.

e Calculate Relative Mean Absolute Error: 36% (i.e.,
1.6/4.5).



Fig. 1. Mean Absolute Error relative to available energy calculation example.
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It is important to note that a more often reported
measurement of error is MAE relative to generating
capacity. In the above example, however, it is unclear over
what time period the generating capacity should be selected.
Should it be capacity during daylight hours or capacity over
the entire day, including night time hours? MAE relative to
daytime capacity is about 13.3% (i.e., 1.6/12) while MAE
relative to full day capacity is about 6.6% (i.e., 1.6/24).

It is due to this sort of ambiguity, as well as the fact that
MAE relative to energy is a much more stringent metric
(e.g., in this example, MAE relative to energy is 6 times
higher than MAE relative to daily generation capacity), that
the MAE relative to energy is selected as the evaluation
metric.

2.1 Validation Approach

The present model validation is part of a project whose
overall goal is to demonstrate and validate PV power
prediction models in collaboration with the California 1SO.
Two key objectives of this project are: (1) to measure the
accuracy of the models for PV sources within the California
ISO control area; and (2) to ensure that the data is delivered
in a manner compatible with the existing energy and reserve
market mechanisms.

This paper focuses on the first objective and quantifies the
accuracy of the irradiance data for a one-year time period
(2011) and time intervals ranging from one minute to one
year using a historical time perspective. The analysis was
performed for both individual locations (i.e., single solar
systems) and the ensemble of those locations (i.e., a fleet of
solar systems).

A total of six test locations were analyzed where PV
systems are located within California ISO’s control area.
The locations are identified as locations A through F for
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purposes of confidentiality. Each location is equipped with
two redundant global horizontal irradiance (GHI) sensors.
One of the sensors was used as a reference and compared to
four test configurations: the second ground sensor, and the
three satellite-derived sources (SolarAnywhere Standard,
Enhanced, and High Resolution data sets).

The validation approach involved the following steps:

e  Obtain time-series GHI data for 2011 for six locations
(see Fig. 2 for an example of one day of data):

0 4 second data averaged into 1-minute time intervals
from two separate sensors at each location
(sources: California 1SO [20])

0 Satellite based data at the following resolutions
(source: SolarAnywhere [14])
= 1 minute, 1 km grid (High Resolution)
= Y hour, 1 km grid (Enhanced Resolution)
= 1 hour, 10 km grid (Standard Resolution)

e Time-synchronize data sets by converting ground
sensor data from Pacific Daylight Time to Pacific
Standard Time.

e Evaluate all observations for data quality; exclude data
where any one of the data sources has data quality
issues.

e Calculate MAE relative to the actual energy available
using the ground sensor that minimizes SolarAnywhere
error as a reference.

e Calculate MAE relative to the actual energy available
using the other ground sensor as a reference.

e Repeat the analysis for fleets of locations.



3. RESULTS

The relative MAE was calculated for individual locations
and for a fleet of locations.

3.1 Individual Locations

Fig. 3 presents the average MAE of four individual
locations (two locations were eliminated due to insufficient
data after data screening). The black line summarizes the
error when two ground stations were used (one was the
reference and the other was the test). The green, blue, and
red regions summarize the error when SolarAnywhere High,
Enhanced, and Standard Resolution were compared to the
ground sensor. The green, blue, and red areas are regions
rather than lines because they compare satellite data to
ground data using the two different ground sensors; the top
of the region is the comparison using the ground sensor that
maximizes error; the bottom of the region is the comparison
using the ground sensor that minimizes error.

There are several important things to notice in the figure.
First, as expected, error decreases for all data sources as the
time interval increases. Second, accuracy improves for each
of the three satellite models as the spatial and temporal
resolutions are increased. Third, error exists even between
two ground sensors that are in almost the same location (i.e.,
ground sensors have 1 percent annual error). Fourth,
SolarAnywhere High Resolution has only 10 percent error
over a one-minute time interval, 7 percent error over a one-
hour time interval, and 2 to 3 percent error on a one-year
time interval.

Fig. 3. Average MAE of 4 individual locations.
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Fig. 2. GHI data from 4 sources (July 4, 2011, Site B).
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3.2 Fleet of Locations

As illustrated by the list of References, a number of studies
have examined the issue of PV output variability. A
consistent finding of these studies is that variability is
reduced when PV systems are geographically dispersed.
That is, variability is reduced as the number of systems
increases across a sufficiently large geographic region.

So far, this paper has focused on the error associated with
individual locations.

Fig. 4. MAE of 4 locations combined.
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While individual locations are of interest in some cases,
there are certainly many other cases in the utility industry
when users are most interested in the error associated with a
set of locations.

The MAE analysis was repeated with the input data being
the combined irradiance across four locations. The results
are presented in Fig. 4. A clear reduction in error due to
combining locations can be seen by comparing Fig. 4 to Fig
3. That is, the effect of geographic dispersion on reducing
output variability reduction that has been observed by others
is now also observed with regard to prediction accuracy:
accuracy improves as a geographically diverse set of
independent locations are combined.

4. CONCLUSIONS

Two critical challenges to greater penetration of PV into a
state's electricity system are: (1) PV output variability; and
(2) ability to accurately predict PV output variability. A
number of researchers focusing on the first challenge have
demonstrated that PV output variability is reduced by
geographic diversity. This paper begins to quantify the
accuracy in predicting variability.

Results suggest that, first, satellite-based irradiance has
annual error comparable to ground sensors. Thus, satellite
data may perform as well as ground data for plant siting at a
fraction of the cost, plus the benefit of long-term data
streams. It should be noted that even well maintained
ground sensors produce considerably more invalid data
points than the satellite (a ratio of 100-to-1 in the present
study), and that the satellite data were key in detecting these
erroneous data points (particularly when both redundant
Sensors were inaccurate at the same time).

Second, high resolution satellite-based irradiance has 10
percent one-minute error for a single location, making it
suited to provide the data required to perform high
penetration PV studies.

Third, accuracy improves predictably due to the benefit of
geographic dispersion. That is, the effect of geographic
dispersion on reducing output variability reduction that has
been observed by others is now also observed with regard to
prediction accuracy.

5. ACKNOWLDEGEMENTS

This study was funded under a California Energy
Commission (CEC) Public Interest Energy Research (PIER)
Grant Agreement titled “Demonstration and Validation of
PV Output Modeling Approach” with co-funding from the
California 1SO. Special thanks to Jim Blatchford at the

California ISO for providing data and guidance for the
analysis. Opinions expressed herein are those of the authors
only.

5. REFERENCES

1. Lorenz E., T. Scheidsteger, J. Hurka, D. Heinemann
and C. Kurz, (2011): Regional PV power prediction for
improved grid integration. Progress in Photovoltaics,
19,7, 757-771.

2. Hoff, T. E., Perez, R. 2012. “Modeling PV Fleet Output
Variability.” Solar Energy, Forthcoming.

3. Hoff, T. E., Perez, R. 2010. “Quantifying PV power
Output Variability.” Solar Energy 84 (2010) 1782-
1793.

4. Kuszamaul, S., Ellis, A., Stein, J., Johnson, L. 2010.
“Lanai High-Density Irradiance Sensor Network for
Characterizing Solar Resource Variability of MW-Scale
PV System.” 35th Photovoltaic Specialists Conference,
Honolulu, HI. June 20-25, 2010.

5. Mills, A., Wiser, R. 2010. Implications of Wide-Area
Geographic Diversity for Short-Term Variability of
Solar Power. Lawrence Berkeley National Laboratory
Technical Report LBNL-3884E.

6. Mills, A., Ahlstrom, M., Brower, M., Ellis, A., George,
R., Hoff, T., Kroposki, B., Lenox, C., Miller, N., Stein,
J., Wan, Y., 2009. Understanding variability and
uncertainty of photovoltaics for integration with the
electric power system. Lawrence Berkeley National
Laboratory Technical Report LBNL-2855E.

7. Navigant, Sandia National Laboratories, and Pacific
Northwest National Laboratory. 2011. Large-Scale PV
Integration Study. Report.

8. Norris, B. L., Hoff, T. E., 2011. “Determining Storage
Reserves for Regulating Solar Variability.” Electrical
Energy Storage Applications and Technologies
Biennial International Conference 2011.

9. Perez, R., Hoff, T.E. 2011. “Solar Resource Variability:
Myth and Fact.” Solar Today, August/September 2011.

10. Perez, R., Kivalov, S., Schlemmer, J., Hemker Jr., C. ,
Hoff, T. E. 2011. Parameterization of site-specific
short-term irradiance variability, Solar Energy 85
(2011) 1343-1353.

11. Perez, R., Kivalov, S., Schlemmer, J., Hemker Jr., C. ,
Hoff, T. E. 2010b. “Short-term irradiance variability
correlation as a function of distance.” Accepted to Solar
Energy (Feb. 2011).



12. Woyte, A., Belmans, R., Nijs, J. 2007. “Fluctuations in

13.

14,

instantaneous clearness index: Analysis and statistics.”
Solar Energy 81 (2), 195-206.

Hoff, T. E. (2011). U.S. Patent Applications:
Computer-Implemented System and Method for
Determining Point-to-Point Correlation of Sky
Clearness for Photovoltaic Power Generation Fleet
Output Estimation (Application Number 13/190,435),
Computer-Implemented System and Method for
Estimating Power Data for a Photovoltaic Power
Generation Fleet (Application Number 13/190,442),
Computer-Implemented System and Method for
Efficiently Performing Area-to-Point Conversion of
Satellite Imagery for Photovoltaic Power Generation
Fleet Output Estimation(Application Number
13/190,449).

Solar Anywhere, 2012. Web-Based Service that
Provides Hourly, Satellite-Derived Solar Irradiance
Data Forecasted 7 days ahead and Archival Data back
to January 1, 1998. www.SolarAnywhere.com.

15.

16.

17.

18.

19.

20.

Perez, R., T. Hoff and S. Kivalov, (2011): Spatial &
temporal characteristics of solar radiation variability.
Proc. of International Solar Energy (ISES) World
Congress, Kassel, Germany

Jamaly, S., Bosch, J., Kleissl, J. 2012. “Aggregate
Ramp Rates of Distributed Photovoltaic Systems in San
Diego County.” Submitted to IEEE Transactions on
Sustainable Energy.

Willmott CJ, Ackleson SG, Davi RE, Feddema JJ,
Klink KM, Legates DR, O'Donnell J, Rowe CM (1985)
“Statistics for the evaluation and comparison of
models.” J. Geophys. Res. 90C: 8995-9005

IEA Solar Heating and Cooling Programme, Task 36,
Subtask A, (2011): Standard Qualification for Solar
Resource Products.

Hoff, T.E., Perez, R., Kleissl, J., Renne, D. Stein, J.
2012. “Reporting of Relative Irradiance Prediction
Dispersion Error.” American Solar Energy Society
Annual Conference. May 2012. Denver, Co.
California Independent System Operator monitoring
program (2011).



