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ABSTRACT 
 
This article evaluates the ability of three operational satellite 
models (SolarAnywhere® Standard, Enhanced, and High 
Resolution) to predict ground-based measured irradiance 
conditions. Results suggest that the performance of the 
satellite-based monitoring approaches that of well-
maintained redundant sensors at a fraction of the operational 
cost.  

SolarAnywhere Enhanced and High Resolution have an 
annual error that is slightly higher than co-located ground 
sensors when the invalid ground-based measured data are 
excluded from the analysis.  SolarAnywhere High 
Resolution has 1/3 less error at an hourly time interval 
compared to SolarAnywhere Standard Resolution. Results 
also show that SolarAnywhere High Resolution has 10 
percent Mean Absolute Error on a one-minute time interval, 
making it well suited to provide the basis for data required 
to perform high-penetration PV studies.  

The paper also demonstrates that geographically dispersing 
PV systems results in both lower variability and less 
prediction error; this is consistent with recent observations 
that regional solar resource predictions are considerably 
more accurate than single site predictions [1]. 

 
1. INTRODUCTION 
 
Solar photovoltaic (PV) plant power production variability 
is one of the critical challenges to greater penetration of PV 
into the state's electricity system. As illustrated by the list of 
References, a number of studies have examined the issue of 
PV output variability [2-12]. A consistent finding of these 
studies is that variability is reduced when PV systems are 
geographically dispersed. That is, variability reduces as the 
number of systems increases across a sufficiently large 
geographic region. 
 

A second critical challenge to greater penetration of PV is 
the ability to accurately forecast PV power production 
variability when it occurs. The California Energy 
Commission’s (CEC) Public Interest Energy Research 
(PIER) program has embarked on a data validation effort 
titled, “Demonstration and Validation of PV Output 
Modeling Approach.” A methodology has been developed 
that uses satellite-derived solar data to forecast PV fleet 
output and quantify variability given the design attributes 
and locations of PV systems [13]. The methodology uses 
advanced algorithms to track cloud patterns and calculate 
plant correlation coefficients.  
 
The California Independent System Operator (California 
ISO) sees the potential of using this methodology to 
calibrate its studies of system operations under alternative 
renewable energy scenarios, as well as the potential for 
forecasting PV output. However, before the methodology 
will be practical and usable in studies and forecasting by the 
California ISO and others, additional work is needed in data 
analysis, validation, and system integration. 
 
The California Solar Initiative (CSI) funded the 
development of an enhanced resolution satellite-based solar 
resource database for the state of California. It is referred to 
as SolarAnywhere Enhanced Resolution [14]. The database 
has a 1 km spatial resolution and ½ hour temporal 
resolution, using the native spatial and temporal resolution 
of the US geostationary satellites. This data set has been 
further expanded to have a 1 km spatial, 1 minute temporal 
resolution by applying intra-interval short-term forecasting 
[15]. It is referred to as SolarAnywhere High Resolution 
[14]. These data sets have the potential to provide the solar 
resource data required by the methodology described above. 
 
The first step, however, is to quantify the accuracy. This 
first step constitutes the main objective of this paper. 
There have been some initial efforts at data validation of 
SolarAnywhere Enhanced Resolution. For example, Jamaly, 
Bosch, and Kleissl [16] compared measured output for a 
fleet of 86 PV systems in San Diego County to simulated 



 

PV fleet output using SolarAnywhere Enhanced Resolution 
data during high ramping conditions. The authors concluded 
that “the satellite data were able to closely follow the 
aggregate power output and detect the timing of the ramps, 
while 5 irradiance measurement stations [dispersed within 
the region occupied by the PV systems] stations were not as 
accurate due to smaller number and non-representative 
geographical distribution with respect to the PV sites.” This 
useful observation calls for a systematic and quantitative 
evaluation of prediction accuracy as presented in this paper.  
 
 
2. METHODS 
 
2.1 Definitions 
 
Accuracy validation often means different things to different 
people. As such, it is useful to begin with a definition of 
how accuracy quantification can be performed. 
There are three fundamental questions that need to be 
answered in order to provide a clear definition of how 
accuracy validation is performed. 
 

1. What is the data source? 
2. What are the time attributes? 
3. What is the evaluation metric? 

2.1.1 Data Source 
 
The first step is to identify the data that is being evaluated. 
Options include irradiance data or PV power production 
simulated using irradiance data and other parameters. In 
addition, the analysis can be performed for individual 
locations or fleets (i.e., multiple locations). This paper 
focuses on irradiance data. The analysis is performed for 
both individual locations and fleets. 
 
2.1.2 Time Attributes 
 
The second step is to specify the required time attributes. 
These include: 
 

 Time period: total amount of data included in the 
analysis. This can range from a few minutes to 
many years. This paper focuses on one year of 
data. 

 Time interval: how the data in the time period is 
binned. This can range from a few seconds to 
annually. For example, if the time period is one 
year and the time interval is one hour, the time 
period would be binned into 8,760 increments. This 
paper examines one-minute to one-year time 
intervals.  

 Time perspective: when the predicted observation 
is reported. This can range from historical, 
(backward looking) to forecasted a few hours 
ahead, to forecasted multiple days ahead (forward 
looking). This paper focuses on historical data. 

2.1.3 Evaluation Metric 
 
The third step is to select the evaluation metric. Error 
quantification metrics used in assessing absolute irradiance 
model accuracy such as Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) have been precisely 
defined  [17, 18]. Their relative counterpart (results 
expressed in percent), however, can be subject to 
interpretation and may cover a wide range of values for a 
given set of data depending on reporting practice.  
 
Hoff et al. [19] suggest that the MAE relative to available 
energy is a good method to measure relative dispersion 
error. This is the method used in the present analysis. The 
MAE relative to the average energy available is calculated 
by summing the absolute error for each time interval over 
the time period, and then dividing by the total available 
energy. 
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where ܫ௧

௧௦௧ is the test irradiance at time t, ܫ௧
 is the 

reference irradiance at time t, and N is the number of time 
intervals. 
 
It is useful to provide a hypothetical example of how to 
calculate the MAE relative to available energy. A short time 
period (one day) is selected in order to graphically illustrate 
the calculations; the actual calculations in this paper use a 
one-year time period.  
 
As presented in Fig. 1, the process is follows: 
 

 Select time period: 1 day. 

 Select time interval: 1 hour. 

 Calculate absolute error for each hour and sum the 
result as described in the top part of Equation ( 1 ): 
1.6 kWh/m2/day. 

 Calculate available energy for each hour from 
reference data and sum the result as described in 
the bottom part of Equation ( 1 ): 4.5 kWh/m2/day. 

 Calculate Relative Mean Absolute Error: 36% (i.e., 
1.6/4.5). 
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3. RESULTS 
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While individual locations are of interest in some cases, 
there are certainly many other cases in the utility industry 
when users are most interested in the error associated with a 
set of locations. 
 
The MAE analysis was repeated with the input data being 
the combined irradiance across four locations. The results 
are presented in Fig. 4. A clear reduction in error due to 
combining locations can be seen by comparing Fig. 4 to Fig 
3. That is, the effect of geographic dispersion on reducing 
output variability reduction that has been observed by others 
is now also observed with regard to prediction accuracy: 
accuracy improves as a geographically diverse set of 
independent locations are combined. 

4. CONCLUSIONS 

 
Two critical challenges to greater penetration of PV into a 
state's electricity system are: (1) PV output variability; and 
(2) ability to accurately predict PV output variability. A 
number of researchers focusing on the first challenge have 
demonstrated that PV output variability is reduced by 
geographic diversity. This paper begins to quantify the 
accuracy in predicting variability. 
 
Results suggest that, first, satellite-based irradiance has 
annual error comparable to ground sensors. Thus, satellite 
data may perform as well as ground data for plant siting at a 
fraction of the cost, plus the benefit of long-term data 
streams. It should be noted that even well maintained 
ground sensors produce considerably more invalid data 
points than the satellite (a ratio of 100-to-1 in the present 
study), and that the satellite data were key in detecting these 
erroneous data points (particularly when both redundant 
sensors were inaccurate at the same time). 
 
Second, high resolution satellite-based irradiance has 10 
percent one-minute error for a single location, making it 
suited to provide the data required to perform high 
penetration PV studies. 
 
Third, accuracy improves predictably due to the benefit of 
geographic dispersion. That is, the effect of geographic 
dispersion on reducing output variability reduction that has 
been observed by others is now also observed with regard to 
prediction accuracy. 
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