

2014 Value of Solar at Austin Energy

October 21, 2013

Prepared for Austin Energy

Prepared by Clean Power Research

Copyright © 2013 by Clean Power Research

Austin Energy's Leadership in Value of Solar has Received National Recognition

Dual-Atis Trache

- Nationally referenced in media about Value of Solar tariff with references very favorable toward the Austin Energy (more than a dozen references last time I looked)
- Austin Energy's Value of Solar was showcased at Valuing Distributed Energy Princeton Roundtable (attendees including chair of FERC, multiple chairs of PUCs, multiple CEO of East Coast utilities, ...)
- State of Minnesota is patterning their program after Austin Energy's

Consulting

Dual-Atis Tractor

Software

to 1.750

Founded in 1998 with the mission to 'power intelligent energy decisions'

PV System

Prepared by Clean Power Research for Austin Energy

Research

SOLAR PREDICTION

Most widely used solar resource database

ECONOMIC VALUATION

~30 million solar estimations performed

PROGRAM OPTIMIZATION

~4.4 GW of renewable incentives processed

Objective

Calculate long-term value of solar to Austin Energy

Dual-Atis Tracher

- This information will be used by Austin Energy as input for the basis of a rate offered to customers
- Rebates are not included in the analysis
- Societal benefits are not included in the analysis

Value of Solar

PV System

Ranges Select

to 1.750

Dual-A is Tracket

Value of Solar Components

Dual-Atis trauna

e = South)

to 1.750

Value Component	Basis
Guaranteed Fuel Value	Cost of fuel to meet electric loads and T&D losses inferred from nodal price data & guaranteed future NG prices
Plant O&M Value	Costs associated with operations and maintenance
Generation Capacity Value	Capital cost of generation to meet peak load inferred from nodal price data
Avoided T&D Capacity	Cost of money savings resulting from deferring T&D
Cost	capacity additions.
Avoided Environmental	Cost to comply with environmental regulations and
Compliance Cost	policy objectives.

pv System

Select

Ranges

Nodal Price Approach

PV System

Ranges Select

to 1.750

Dual-A is Tracket

Nodal Price Approach to Calculate Energy and Capacity Value of PV

Obtain hourly nodal prices (2011 to 2012)

Dual-Agis Tracker

to 1.750

- Obtain PV fleet production that is time-correlated with hourly nodal prices
 - PV system specs provided by Austin Energy
 - Solar resource data provided by SolarAnywhere
 - Fleet simulation performed using SolarAnywhere FleetView
- Calculate weighted average solar value by multiplying PV fleet production by nodal prices
- Project future value

by System

PV Fleet Analysis

Prepared by Clean Power Research for Austin Energy

pv System

Ranges Selection

to 1.750

Dual-Alis Tracker South)

Fleet Data Import

to 1.750

pv System

Only systems that had a final approval date were considered

Dual-Atis Traches

- Inverter/module names modified to match equipment database (more work required here due to naming inconsistencies)
- If equipment match found, used <u>inverter efficiency</u> and <u>module PTC</u> ratings listed by the CEC
- If no match, created "generic" system using the tilt, azimuth, and inverter efficiency from the spreadsheet
- Systems with missing ratings or equipment were excluded
- Geocoded exact latitude and longitude of systems (Bing Maps API).
 Unable to locate 88 systems in this manner (zip code centroid used)
- Arrays combined into multi-array systems based on common application ID

PV Rating Convention

to 1.750

kW-AC = DC-STC x Module Derate x Inverter Efficiency x Loss Factor

Example:

PV System

10 kW DC-STC

X 90% module derate factor (CEC lookup)

Dual-Atis traction

X 95% inverter load-weighted efficiency (CEC lookup)

X 85% other loss factor

7.27 kW-AC

Relationship Between System Rating and Capacity Factor

Dual-Atis Tracker

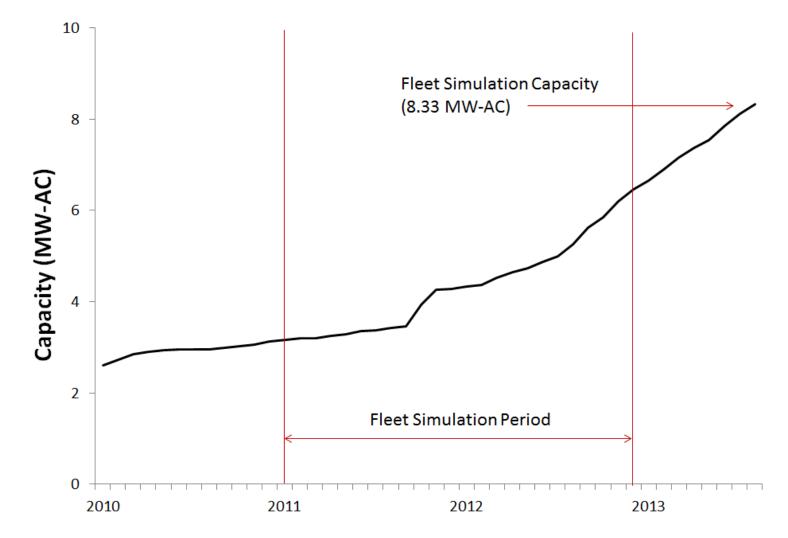
- 1 kW-AC PV system (as defined on previous slide)
 - Has 22% capacity factor

to 1.750

by System

- Produces 1,927 kWh per kW-AC per year
- 1kW-DC (i.e., nameplate module rating)
 - Has 16% capacity factor
 - Produces 1,400 kWh per kW-DC per year
- 1.376 kW-DC of PV are required to have same energy as 1 kW-AC of PV
 - 1.376 * 1,400 kWh per year = 1,927 kWh per year

Fleet Capacity


Select

anges

to 1.750

Dual-A is Tracke South)

pv System

Fleet Modeling

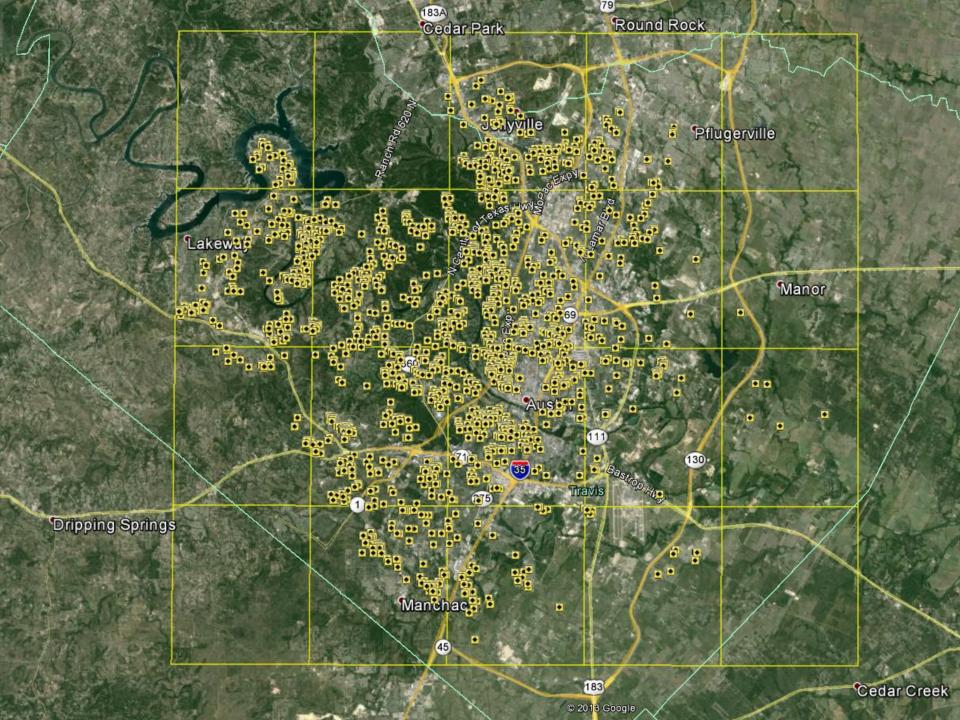
to 1.750

pv System

 Modeling is based on static fleet as of July 31, 2013. All systems are modeled for period of 1/1/2010 to 12/31/2012 regardless of actual installation date. This results in a representative fleet shape for economic modeling purposes.

Dual-Atis Tractic

- Individual systems are modeled hourly, and AC power is summed to give hourly fleet production
- Modeling uses SolarAnywhere Standard Resolution (10 km x 10 km), 17 tiles


Fleet Statistics

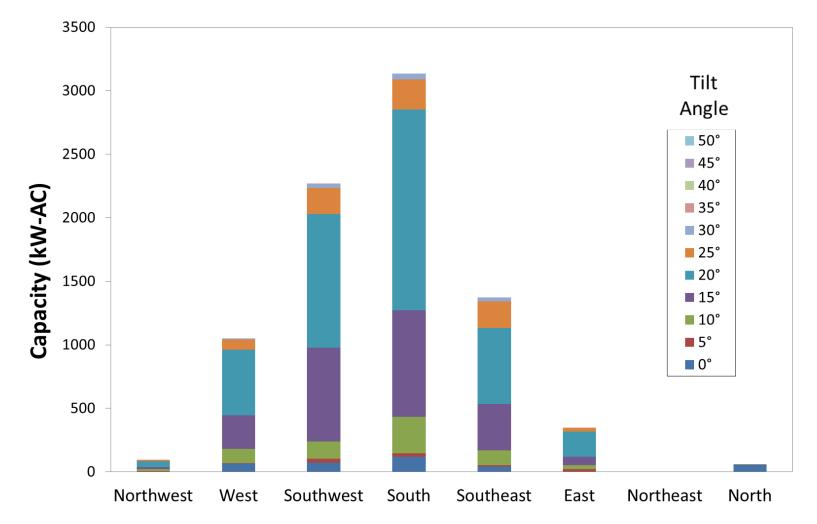
to 1.750

pv System

- A total of 2,423 systems were included in the fleet. These systems contained 2,900 arrays. 1,004 of the systems are generic
- The fleet, as simulated, has a capacity of 8.33 MW-AC

Dual-Atis Traches

Fleet Orientations


to 1.750

Dual-Alis Tracker South)

Select

Ranges

PV System

Fleet Results

to 1.750

pv System

 Resulting dataset: hourly Austin Energy fleet output for 2011 and 2012

Dual-Atis Tracket

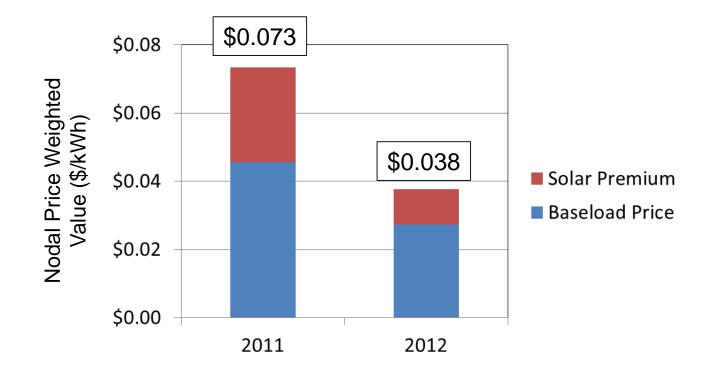
Nodal Price Value Calculation

Dual-Atis tracks

e a South)

to 1.750

HE (CST)	[A] Fleet Energy (MWh)	[B] Nodal Price (\$/MWh)	= [A] x [B] Value (\$)
1/1/2011 6:00	0.000	28.46	0.00
1/1/2011 7:00	0.000	32.39	0.00
1/1/2011 8:00	0.385	34.80	13.38
1/1/2011 9:00	1.953	36.20	70.68
1/1/2011 10:00	4.016	36.97	148.47
1/1/2011 11:00	5.599	34.06	190.71
1/1/2011 12:00	6.587	41.78	275.21
1/1/2011 13:00	6.940	29.13	202.17
1/1/2011 14:00	6.767	32.46	219.66
1/1/2011 15:00	6.037	29.13	175.85
1/1/2011 16:00	4.782	26.90	128.64
1/1/2011 17:00	2.921	27.76	81.08
1/1/2011 18:00	0.895	34.59	30.96
1/1/2011 19:00	0.036	46.81	1.67
1/1/2011 20:00	0.000	44.77	0.00
1/1/2011 21:00	0.000	42.59	0.00


* Repeat calculation for all hours of year and sum result.

pv System

Results (Excluding All Other Benefits)

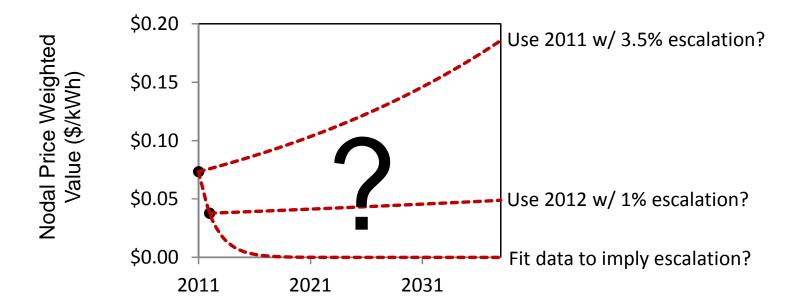
ne s South)

Dual-Atis Tradie

pv System

Ranges

Select


How Should Results Be Used to Forecast Future Energy/Capacity Value?

Value varies by a factor two from 2011 to 2012

Dual-Atis Tr

10 1.750

Which year and escalation rates should be used to project 25 years into the future?

Analysis of Austin Energy Heat Rate Forecast

Dual-Atis Tracke

- It is important to match time-correlated PV production data to nodal prices in order to correctly calculate value
- Time-correlated PV production data, however, is impossible to obtain for projected nodal prices
- The best-available alternative is to use historical solar data with projected nodal price data
- This approach risks not capturing the correlation between nodal prices and PV production

Austin Energy Scenario #2: Heat Rate Analysis Approach

Dual-Atis Tracker

to 1.750

- Obtain implied hourly heat rates provided by Austin Energy from 2014 to 2022
- Match 2011 PV fleet production to 2014 2022 hourly heat rates
- Multiply 2011 PV fleet production times 2014 2022 heat rates
- Sum results and divide by energy to obtain results in \$/kWh
- Perform for both solar and baseload plants for comparison purposes

py System

Example for 2014

to 1.750

Dual-Atis Tracker South)

Select

Ranges

pv System

Hour Ending Time	2014 Heat Rate	2011 PV Fleet	Heat Rate x PV
	(Btu/kWh)	Production (kWh)	(Btu)
Jan. 1, 1:00	7,153	0	0
Jan. 1, 2:00	6,348	0	0
Jan. 1, 3:00	5,553	0	0
Jan. 1, 4:00	5,301	0	0
Jan. 1, 5:00	5,188	0	0
Jan. 1, 6:00	5,254	0	0
Jan. 1, 7:00	5,305	0	0
Jan. 1, 8:00	5,572	385	2,142,580
Jan. 1, 9:00	5,580	1,953	10,894,533
Jan. 1, 10:00	6,243	4,016	25,070,085
Jan. 1, 11:00	6,742	5,599	37,750,390
Jan. 1, 12:00	7,598	6,587	50,052,280
		•••	•••

2014 Results

to 1.750

Dual-Alis Trackes

Ranges U Select

PV System

PV Fleet Production	16,050,103 kWh
Sum Hourly Heat Rate x PV Production	228,356,186,159 Btu
Solar Weighted Heat Rate	14,228 Btu/kWh
Avg. (Baseload) Heat Rate	9,497 Btu/kWh

Results for All Years

to 1.750

Dual-Alis Trackes

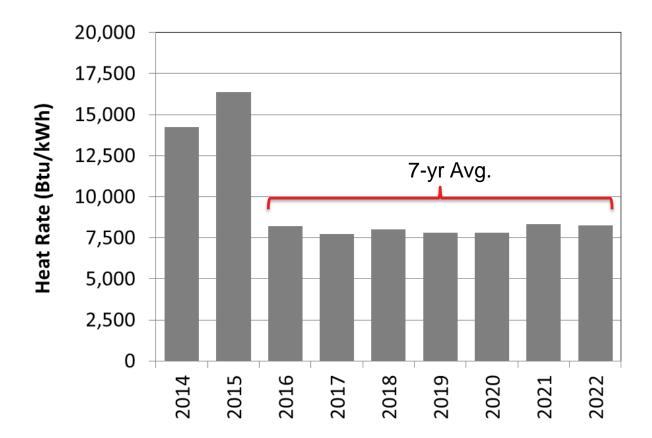
Select

Ranges

pv System

	Weighted Heat Rates (Btu/kWh)							
		Solar			Baseload			
	Total	Energy	Excess	Total	Energy	Excess		
2014	14,228	8,024	6,201	9,497	7,248	2,249		
2015	16,382	8,024	8,358	10,109	7,248	2,861		
2016	8,218	8,218		7,381	7,381			
2017	7,750	7,750		7,220	7,220			
2018	8,004	8,004		7,279	7,279			
2019	7,803	7,803		7,142	7,142			
2020	7,827	7,827		7,128	7,128			
2021	8,318	8,318		7,317	7,317			
2022	8,246	8,246		7,267	7,267			

Averages



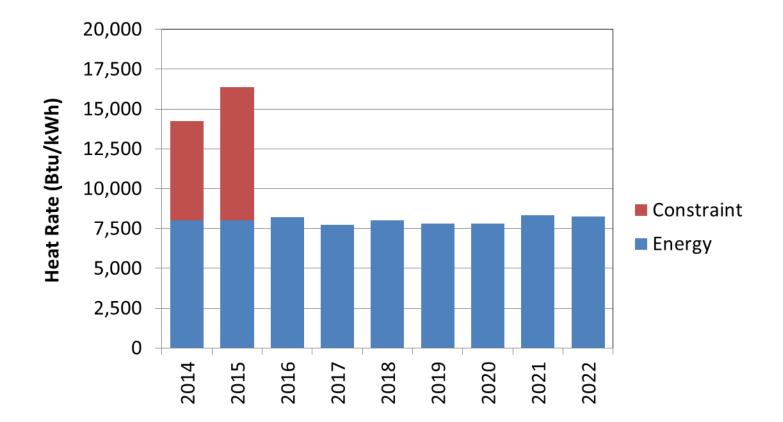
Solar Weighted Heat Rate Analysis Results **Graphical Presentation**

ne = South)

Dual-Atis Traches

Select

10 1.750


pv System

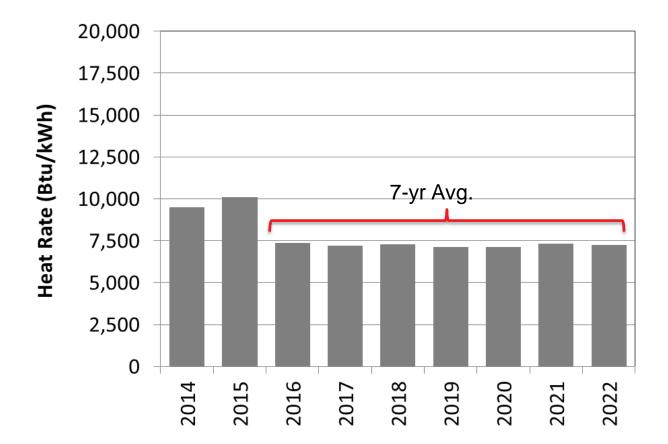
Ranges

Solar Weighted Heat Rate Analysis Results **Graphical Presentation**

ne south)

Dual-Atis Traches

py System


Ranges

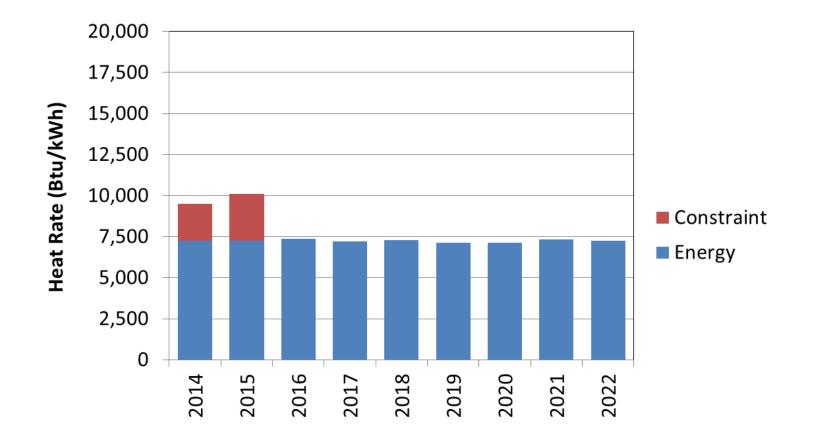
Select

Baseload Heat Rate Analysis Results Graphical Presentation

ie = South)

Dual-Atis traction

pv System


Ranges

Selecc

Baseload Heat Rate Analysis Results Graphical Presentation

ne = South)

Dual-Atis traction

pv System

Ranges

Selecc

Evaluation of Effective Capacity for Solar

Dual-Atis Trache

Step 1: Estimate "capacity value" of solar and baseload plants for 2014 and 2014

	Heat Rate (Btu/kWh)		Heat Rate (Btu/kWh)		Production	NG Price	Annu	al Value (\$/k	W-yr)
Year	Plant Type	Total	Energy	(kWh/kW)	(\$/Mbtu)	Total	Energy	Capacity*	
2014	Solar	14,228	8,024	1,927	\$3.98	\$109	\$61	\$48	
2015	Solar	16,386	8,024	1,927	\$3.82	\$121	\$59	\$62	
2014	Baseload	9,497	7,248	8,760	\$3.98	\$331	\$252	\$78	
2015	Baseload	10,109	7,248	8,760	\$3.82	\$338	\$243	\$96	

Step 2: Calculate ratio of capacity values

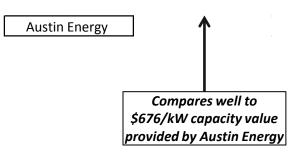
to 1.750

	Solar	Baseload	Ratio
2014	\$48	\$78	61%
2015	\$62	\$96	64%
Avg.			62%

pv system

Capacity Value Validation

Dual-Alis Tracker South)


to 1.750

pv System

Ranges U Select

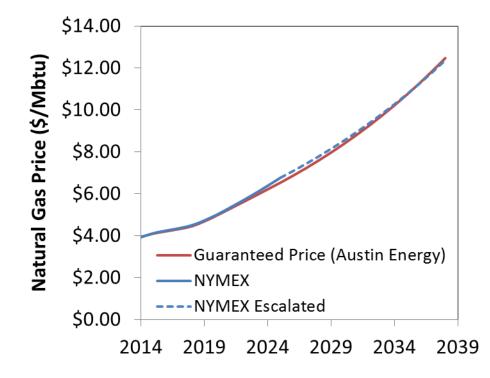
	Excess Heat Rate (Baseload) (Btu/kWh)	NG Price Forecast (Real \$/MBtu)	Excess Value (\$/kW-yr)	Present Value of Excess Value (\$/kW)	Reserve Planning Margin	Value Before Reserve Margin (\$/kW)
	(A)	(B)	(C) = (A) x (B) * 8760 / 1,000,000	(D) = (C) / 10.6%	(E)	(F) = (D) / [1 + (E)]
2014	2,249	\$3.98	\$78	\$738	13.75%	\$649
2015	2,862	\$3.75	\$94	\$885	13.75%	\$778
Average						\$714

Source Heat rate analysis Austin Energy

Annualization factor based on 10% discount rate, 30 year life

Key Parameters for Value of Solar

Dual-Atis Tracker


- Data inferred from Austin Energy's Heat Rate Forecast (2014-2022) and PV fleet production (2011)
 - Solar heat rate: 8,024 Btu/kWh
 - Effective capacity: 62% of capacity cost
- Data provided directly by Austin Energy
 - Capacity cost: **\$676/kW**

- Planning Reserve margin: 13.75%
- O&M cost: **\$7.04/kW-yr**

Key Parameters for Value of Solar Natural Gas Prices

Dual-Atis Trauna

Guaranteed Price (Austin Energy) and NYMEX futures prices match well

to 1.750

Guaranteed Price (Austin Energy) is a 25-yr firm price quote Austin Energy received from a counter party with AA credit rating on 9/23/2013 willing to lock in prices

NYMEX futures prices are only available through 2025

NYMEX Escalated are futures prices escalated at 4.75% after 2025

Value of Solar Components

Dual-Atis trauna

e s South)

to 1.750

Value Component	Basis
Guaranteed Fuel Value	Cost of fuel to meet electric loads and T&D losses inferred from nodal price data & guaranteed future NG prices
Plant O&M Value	Costs associated with operations and maintenance
Generation Capacity Value	Capital cost of generation to meet peak load inferred from nodal price data
Avoided T&D Capacity	Cost of money savings resulting from deferring T&D
Cost	capacity additions.
Avoided Environmental	Cost to comply with environmental regulations and
Compliance Cost	policy objectives.

pv System

Select

Ranges

Inferred and Assumed Values

Dual-Atis Tracher

e = South)

to 1.750

Inputs to Economic Analysis

Select

pv System

Utility-Owned Generation			Environmental		
Capacity			Avoided Environmental Cost	\$0.020	per kWh
Generation Overnight Capacity Cost	\$676	per kW	Environmental Value Escalation Rate	2.60%	per year
Generation Life	30	years			
Reserve Planning Margin	13.75%		Transmission		
Energy			Capacity-related capital cost	\$28.0	per kW-yr
Heat Rate	8024	BTU per kWh	Years until new capacity is needed	0	years
Heat Rate Degradation	0%	per year			
O&M cost (first Year) - Fixed	\$7.04	per kW-yr	Distribution		
			Capacity-related Capital Cost	\$0	per kW
Economic Factors			PV Assumptions		
Discount Rate	Various	per year	PV Degradation	0.50%	per year
General Escalation Rate	2.10%	per year	PV Life	25	years

Peak Losses

pv System

Calculation of combined T&D losses

to 1.750

Dual-Atis Traunes

ie = South)

Average Losses Calculation of combined T&D losses

to 1.750

Dual-Atis Tracker South)

Select

pv System

Ranges

Load - At generation	
Transmision Losses	
Load - At substation high side	
Distribution Losses	
Load - At meter	

1.000 1.60% 0.984 2.88% 0.956

T&D Losses 4.43%

Discount Rate Selection

to 1.750

Dual-Atis traction

Options

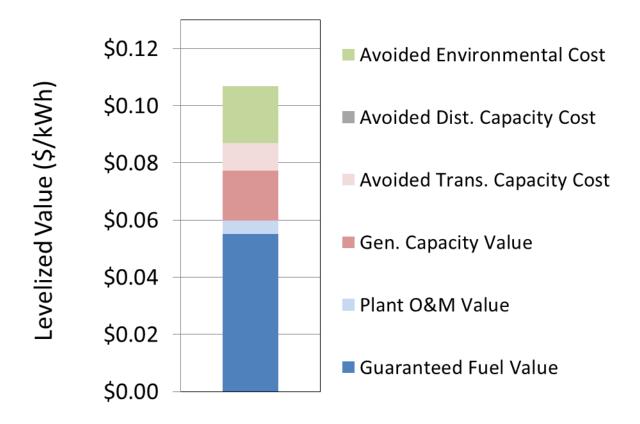
py System

- Use utility discount rate, exclude effect of difference between utility discount rate and risk-free discount rate
- Use utility discount rate, include effect of difference between utility discount rate and risk-free discount rate
- Use risk-free discount rate to discount all costs and levelize VOS rate

Recommendation

- Use risk-free discount rate to discount all costs and levelize VOS
- This captures the benefit of uncertainty reduction but eliminates discussion about what is the correct discount rate to use in the analysis because only one discount rate is used
- This assumption may not apply to other typical utility resource evaluations

2014 VOS Results


to 1.750

Dual-Atis traunes

ie a South)

Select

pv System

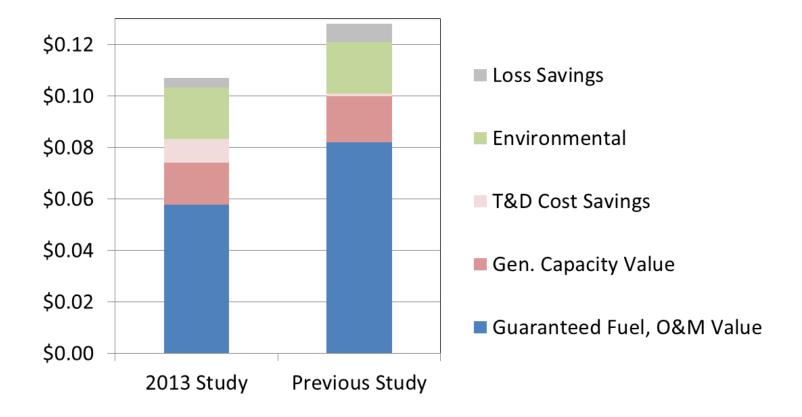
2014 VOS Results

to 1.750

Dual-Atis Tracker South)

Select

Ranges


py System

	Economic Value	Load Match (No Losses)	Distributed Loss Savings	Distributed PV Value
	(\$/kWh)	(%)	(%)	(\$/kWh)
Guaranteed Fuel Value	\$0.053		4%	\$0.055
Plant O&M Value	\$0.005		4%	\$0.005
Gen. Capacity Value	\$0.026	62%	6%	\$0.017
Avoided Trans. Capacity Cost	\$0.015	62%	6%	\$0.010
Avoided Dist. Capacity Cost	\$0.000	39%	7%	\$0.000
Avoided Environmental Cost	\$0.020	_	0%	\$0.020
	\$0.119			\$0.107

How Do Results Compare to Previous Study?

ie = South)

Dual-Atis Trautes

py System

Select

Why Have Results Changed?

Dual-Atis traction

Natural gas prices have declined

to 1.750

- Assumed life is 25 rather than 30 years
- Loss savings are slightly lower
- Transmission savings results have increased
- Methodology has been refined for ERCOT market

pv System